Вычисли стороны и площадь прямоугольника, если его диагональ равна 23√ м и образует с меньшей стороной угол 60 градусов. большая сторона = м. меньшая сторона = −−−−−√ м. площадь прямоугольника равна −−−−−−−√ м2. (если необходимо, ответы округли до сотых).
Откройте файл в отдельном окошке и читайте мои аннотации: 1) Чертим и отмечаем то, что нам известно 2) Здесь мы опускаем высоту CD, которая в равнобедренном треугольнике является и медианой, то есть делит сторону AB на две равные части AD и DB. 3) Находим углы при основании. Поскольку треугольник равнобедренный, то ∠A=∠B. Так же мы сразу видим, что у нас есть 2 прямоугольных треугольника ΔADC и ΔCDB. 4)Когда мы нашли ∠A и ∠B, то с тангенса выражаем высоту, через половину длины основания. 5) Подставляем высоту, выраженную через половину длины основания и тангенса угла, в формулу площади равнобедренного треугольника и, таким образом, вычисляем чему равно основание AB. 6)Теперь в формуле площади ΔACB у нас неизвестная только одна высота CD. Мы можем её найти, что мы и делаем. 7) (На картинке данный пункт отмечен номером 6, как и предыдущий. Опечатка.) Поскольку ΔADC и ΔCDB прямоугольны, то стороны AC и CB являются их гипотенузами, которые равны, так как ΔABC равнобедренный. По теореме Пифагора находим их. 8) Записываем ответ.
Во первых, уточним, что прямая р лежит в ОДНОЙ плоскости с треугольником АВС. Во вторых,существует аксиома: "В одной плоскости через любую точку, не лежащую на данной прямой, можно провести прямую, параллельную данной, и притом только одну". Следствие из этой аксиомы: Если прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую параллельную прямую. Это следствие доказывается методом от противного. Предполагается, что прямая (АС или ВС), пересекающая одну из параллельных прямых (АВ) в точке (А или В), НЕ пересекает вторую. Тогда имеем еще одну прямую k, параллельную второй прямой р, проходящую через точку пересечения (А или В), что противоречит аксиоме о параллельных прямых. Итак, если p параллельна AB, а BC и АС пересекают AB, значит прямые BC и АС (или их продолжения) пересекают и прямую p, т.к. p || AB. Что и требовалось доказать.
вот такой ответ получился