д) Аналогично ∠(OA, OC) = 90°, т.к. угол между диагоналями равен 90°;
е) Векторы AC и BD сонаправлены, значит, угол между ними равен 0°.
ж) Переносим вектор DB параллельным переносом так, чтоб его начало совпадало с точкой А. Тогда ∠(AD, DB) = 135°.
з) Переносом вектор OC параллельны переносом так, чтоб его начплао совпадало с точкой А. Угол между векторами остался таким жеч как и угол между диагоналями, т.е. 90°.
Проведем высоту ромба АН.М - точка пересечения этой высоты с диагональю DB. <АМВ=<KDB (как соответственные при параллельных прямых КD и АН и секущей DB. <AMB=<DMH как вертикальные. Следовательно, нам надо найти синус угла DMH в прямоугольном треугольнике DHM. Диагональ ромба делит его углы пополам. Пусть <MDH=α. Тогда острый угол ромба равен 2α. Нам дано, что Sin2α=0,6. Sin2α=2SinαCosα. SinαCosα=0,3. Sin²αCos²α=0,09. Cos²α=1-Sin²α. Sin²α(1-Sin²α)=0,09. Пусть Sin²α=Х. Тогда Х²-Х+0,09=0. Находим корни этого квадратного уравнения: D=√(1-4*0,09)=0,8 Х1=(1+0,8)/2=0,9. Х2=(1-0,8)/2=0,1. Итак,имеем два корня: Sin²α=0,9 и Sin²α=0,1. Тогда 1)Sinα=√0,9 ≈ 0,949; 2)Sinα=√0,1 ≈ 0,316. Вспомним, что за угол α мы приняли ПОЛОВИНУ острого угла ромба. Значит первый корень нам не подходит, так как arcsin(0,949) ≈ 71°. Итак, нас удовлетворяет ответ Sinα=√0,1. В прямоугольном треугольнике DMH: Sinα=МH/DМ=Cosβ. Значит Cosβ=Sinα=√0,1. Тогда Sinβ=√(1-Cosβ²)=√0,9 ответ: Sinβ=0,9.
a=6 см, b=10см, ω=30 град
S=6*10*sin30=60*1/2=30(см²)