Очевидно, что указанный отрезок является медианой данного треугольника. А медиана разделит равнобедренный треугольник на два абсолютно равных. Периметр полученных треугольников одинаков. Но для подсчета периметра исходного треугольника нужно исключить медиану из расчетов, так как она не будет входит в его периметр (но она входит в периметры маленьких треугольников и мы ее будем исключать из расчетов). Получаем, что периметр каждого маленького треугольника без медианы равен 30 - 5 = 25 см. А потому периметр исходного треугольника равен 25*2 = 50 см. (Начертите рисунок и увидите нагляднее!)
Эта задача на много проще, чем кажется. Если из центра окружности (который лежит на гипотенузе) опустить перпендикуляры на катеты, то получится квадрат и два треугольника, подобных исходному. Если обозначить радиус окружности r, больший катет большего треугольника b, меньший катет меньшего треугольника a, то стороны исходного треугольника будут такие (a + r, b + r, 35) стороны меньшего треугольника (a, r, 15) стороны большего (r, b, 20) и все эти три треугольника подобны между собой. отсюда a/r = 15/20 = 3/4; то есть все эти три треугольника - египетские (подобные треугольнику со сторонами 3, 4, 5) То есть уже можно написать ответ :) вычислять уже ничего не надо, надо просто "подобрать" коэффициенты подобия, чтобы гипотенузы египетских треугольников были бы 15 и 20. Само собой, это 3 и 4. То есть a = 9, r = 12, b = 16; (получились треугольники 9, 12, 15 и 12, 16, 20) Исходный треугольник имеет стороны 21, 28, 35, его площадь 294; длина полуокружности πr = 12π;
Весь "трюк" в том, что r - одновременно больший катет в одном из подобных треугольников и меньший - в другом.
РЕШЕНИЕ
периметр - это сумма 4 сторон P=46 см
сумма трех его сторон равна 42 см
тогда одна из сторон 46-42=4
противоположные стороны в параллелограмме равны
сумма двух сторон 4+4=8
сумма двух других сторон 46-8=38
длина второй стороны 38/2=19
проверка P=2*(4+19=)46
ОТВЕТ стороны 4 19 4 19