Если провести сечение пирамиды через ее высоту перпендикулярно боковой грани, то получится прямоугольный треугольник CNK, где CN - высота пирамиды - один из катетов треугольника, NK - второй катет (след сечения основания пирамиды, N - прямой угол, K - угол равный 60 градусам (из условия), CK - гипотенуза (высота боковой грани пирамиды).
Центр O вписанного в пирамиду шара лежит на CN так, что ON равно его радиусу. Из точки O проведем перпендикуляр на гипотенузу до точки M. OM также должен быть равен радиусу шара. Рассматривая это построение, нетрудно показать, что точка O делит высоту CN в отношении 1:2. Таким образом радиус вписанного шара равен 3 (9/3).
Объем шара (4/3)*π*3*3*3 = π*36 или примерно 3.14*36 = 113
8цел16/37 см самая маленькая высота
Объяснение:
Дано
Треугольник
а=26см сторона треугольника
б=15 см сторона треугольника
с=37 см сторона треугольника
h(37)=?
Решение
Найдем площадь по формуле Герона.
S=√(р(р-а)(р-б)(р-с)), где р- полупериметр
р=(а+б+с)/2
р=(26+15+37)/2=78/2=39 см полупериметр.
S=√(39(39-26)(39-15)(39-37)=√(39*13*24*2)=
=√24336=156 см² площадь треугольника.
Другая формула нахождения площади.
S=1/2*c*h., где с - основание на которую опущена высота. h- высота.
h=2S/c
h(37)=2*156/37=312/37=8цел16/37 см высота
С2=а2+в2
С2=9+16=25
С=5 - диаметр
Нам надо найти радиус. Радиус это половина диаметра
Радиус равен 2,5 см