NM║CB ⇒ ∠SNM = ∠SCB; ∠SMN = ∠SBC как соответственные углы ⇒ ΔSCB ~ ΔSNM по двум равным углам ⇒ ⇒ Т.к. фигура в сечении пирамиды плоскостью, параллельной основанию, подобна основанию, то ΔABC ~ ΔKMN с коэффициентом подобия k = Площади подобных фигур относятся как коэффициент подобия в квадрате
Примем длины рёбер за 1. Ромб с острым углом 60 градусов имеет меньшую диагональ, равную стороне. Половина такого ромба - равносторонний треугольник. Опустим из точек В и Д перпендикуляры на боковое ребро. Они пересекутся в точке К. Треугольник ВКД - равнобедренный. В основании - диагональ ВД = 1. КВ = КД = 1*cos 30° = √3/2. Искомый угол ВКД равен : ∠BKD = 2arcsin((1/2)/(√3/2) = 2arcsin( 1/√3) = 2arcsin(√3/3) = 70,52878°.
P = 2(a+b)
b=a+41
94=2(a+a+41)
2a+41=47
2a=6
a=3
ответ: меньшая сторона равна 3