Центр координат поместим в точку А , ось X в сторону точки F , ось Y в сторону точки С , ось Z в сторону точки А1. тогда координаты интересующих нас точек будут : А(0;0;0) А1(0;0;1) С(0;√3;0) В1(-0.5;√3/2;1) уравнение плоскости А1В1С ax+by+cz+d=0 подставим в него координаты точек А1 С и В1
с+d=0 √3b+d=0 -0.5a+√3/2b+c+d=0
положим d=1, тогда с=-1 b=-1/√3 a=-1/√3 нормализованное уравнение плоскости . к= √(1/3+1/3+1)=√(5/3) -1/√5x-1/√5y-√(3/5)z+√(3/5)=0 подставим координаты точки А(0;0;0) в нормализованное уравнение l =| √(3/5) |= √(3/5) - это искомое расстояние до плоскости.
Треугольник АВС, МН-средняя линия=1/2АВ, проводим высоту СК на АВ, О-пересечение СК и МН, АВ=4х, СК=2у, площадь АВС=1/2*АВ*СК=1/2*4х*2у=4ху, треугольник АВС подобен треугольнику СМН по двум равным углам (АВ параллельна МН), угол В=уголСМН, уголА=уголСНМ как соответственные, МН=1/2АВ=4х/2=2х, в подобных треугольниках площади относятся как квадраты соответствующих сторон, АВ²/МН²=площадьАВС/площадьМСН, 16х²/4²=площадьАВС/площадьМСН,, т.е площадь АВС составляет 4 части, а площадь МСН=1 части, на долю АВМН=4-1=3 части=24, 1 часть=24/3=8=площадьМСН
Площадь ромба=половина произведения диагоналей.
S= 48*64:2=1536 (см2)
a= извлечь корень из 1536= приблизительно 39.19 см