Объяснение:
6(2)
Дано: ромб
диагонали ромба d₁ = 16 дм; d₂ = 30 дм
Найти: сторону ромба а - ?
Сумма квадратов диагоналей равна квадрату стороны умноженному на четыре, а все стороны ромба равны. значит можем найти сторону
ромба
4а² = d₁² + d₂²
4а² = 16²+30²=256+900=1156
а² = 289; а = 17 (дм)
7)
Дано: стороны прямоугольника а = 16 см, с = 91 см
Найти: диагональ прямоугольника d - ?
диагональ прямоугольника делит прямоугольник на два прямоугольных треугольника. берем один из них и видим, что диагональ d - это гипотенуза прямоугольного треугольника со сторонами 60 и 91. тогда по теореме Пифагора
d² = а² + с²
d² = 16² + 91² = 3600 + 8281 = 11881
d = 109 (см)
9)
окружность описана вокруг квадрата.
диаметр окружности d = 1.4 (м); радиус r = 0.7(м)
сторона квадрата а = 1 (м)
сторона квадрата и диаметр описанной окружности связаны формулой
r= a/√2
проверяем 0,7 ≈ 1/√2
ответ - можно
Четырехугольник, у которого противоположные стороны попарно параллельны (лежат на параллельных прямых) - параллелограмм.
По условию АС и ВD, АВ и CD лежат на параллельных прямых. Следовательно, АВСD- параллелограмм.
В параллелограмме противоположные стороны равны. ⇒
АС=ВD и АВ-СD.
Соединив А и D, получим треугольники АСD и ABD.
В них накрестлежащие углы при пересечении параллельных прямых а и b секущей АD равны.
Накрестлежащие углы при параллельных прямых АВ и CD секущей АD - равны.
Сторона AD- общая.
Треугольники АСD и ABD равны по второму признаку равенства треугольников. Их соответственные стороны равны.
⇒АВ=СD.
.
еометрическое место точек. Круг и окружность
Геометрическое место точек. Срединный перпендикуляр. Биссектриса угла.
Окружность. Круг. Центр окружности. Радиус. Дуга. Секущая. Хорда.
Диаметр. Касательная и её свойства. Сегмент. Сектор. Углы в круге.
Длина дуги. Радиан. Соотношения между элементами круга.
Геометрическое место точек – это множество всех точек, удовлетворяющих определённым заданным условиям.
П р и м е р 1. Срединный перпендикуляр любого отрезка есть геометрическое
место точек (т.е. множество всех точек), равноудалённых от
концов этого отрезка. Пусть PO AB и AO = OB :
Тогда, расстояния от любой точки P, лежащей на срединном перпендикуляре PO, до концов A и B отрезка AB одинаковы и равны d .
Таким образом, каждая точка срединного перпендикуляра отрезка обладает следующим свойством: она равноудалена от концов отрезка.
П р и м е р 2. Биссектриса угла есть геометрическое место точек, равноудалённых от его сторон.
П р и м е р 3. Окружность есть геометрическое место точек (т.е. множество
всех точек), равноудалённых от её центра ( на рис. показана одна
из этих точек – А ).