М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kalmykov24
kalmykov24
25.05.2020 02:24 •  Геометрия

Периметр равностороннего треугольника равен 60 см.чему равна каждая его сторона?

👇
Ответ:
olyailysha31
olyailysha31
25.05.2020
(60÷3=20) 
ответ: 20.   

0_0
4,7(67 оценок)
Открыть все ответы
Ответ:
linaangel20012
linaangel20012
25.05.2020

Площадь трапеции равна 900√3 м²

Объяснение:

Дано:

ABCD - трапеция

АС - диагональ трапеции

AB = CD - боковые стороны

АС ⊥ CD

AD = 40√3 м - большее основание

∠A = ∠D = 60°

Найти:

S - площадь трапеции

Рассмотрим прямоугольный треугольник ACD, гипотенуза которого AD = 40√3 м и ∠D = 60°.

Катеты АС и CD этого треугольника равны

АC = AD · sin 60° = 40√3 · 0.5√3 = 60 (м)

CD = AD · cos 60° = 40√3 · 0.5 = 20√3 (м)

Поскольку трапеция равнобедренная, то

АВ = CD = 20√3 м.

Из вершины С прямого угла треугольника ACD опустим на гипотенузу AD  высоту CK, которая одновременно является и высотой трапеции

CK = \dfrac{AC\cdot CD}{AD} = \dfrac{60\cdot 20\sqrt{3} }{40\sqrt{3} } = 30~(m)

В треугольнике ACD

∠CAD = 90° - ∠D = 90° - 60° = 30°

Основания трапеции ВС ║ АD

∠ACB =  ∠CAD = 30° (внутренние накрест лежащие углы при ВС ║ АD и секущей АС).

Рассмотрим ΔАВС.

∠ВАС = ∠BАD - ∠CAD = 60° - 30° = 30°

Поскольку в ΔАВС   углы  ∠ВАС = ∠ACB = 30°, то ΔАВС - равнобедренный, то есть ВС = АВ = 20√3 м.

Площадь трапеции равна произведению полусуммы оснований на высоту.

 S = \dfrac{BC + AD}{2}\cdot CK = \dfrac{20\sqrt{3} + 40\sqrt{3} }{2}\cdot 30 = 900\sqrt{3} ~(m^2)

4,4(50 оценок)
Ответ:
burkhanovshukh
burkhanovshukh
25.05.2020

Пусть MA₁║AB, MB₁║BC, MC₁║AC.

Рассмотрим фигуру AB₁MC₁. Т. к. MC₁║AC ⇒ MC₁║AB₁, AC₁∦MB₁ ⇒ AB₁MC₁ - трапеция. Т. к. ∠A = ∠C, ∠C = ∠AB₁M как соответственные ⇒ ∠A = ∠AB₁M ⇒ AC₁ = MB₁, т. е. трапеция равнобедренная ⇒ B₁C₁ = AM как диагонали равнобедренной трапеции.

Аналогично рассуждая, C₁A₁ = BM, A₁B₁ = CM, что и требовалось доказать.

Пусть C₁H₁⊥AB₁, MH₂⊥AB₁. Тогда MC₁H₁H₂ - прямоугольник ⇒ H₁H₂ = C₁M. Т. к. A₁BC₁M - равнобедренная трапеция, A₁B = C₁M ⇒ A₁B = H₁H₂.

В прямоугольном треугольнике AH₁C₁ AH₁ = AC₁ * cos A = b * cos 60° = 0.5b. Аналогично B₁H₂ = 0.5b. Тогда H₁H₂ = AB₁ - AH₁ - H₂B₁ = a - 0.5b - 0.5b = a - b ⇒ A₁B = a - b.

ответ: a - b


Внутри правильного треугольника авс взята произвольная точка м. доказать, что на сторонах ав, вс и с
4,6(65 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ