Ромб ABCD перегнули по его большей диагональю BD так, что плоскости ABD и CBD оказались перпендикулярными, а расстояние между точками A и C стала равна 4√2 см. Найдите длину сторона ромба, если тупой угол ромба равен 120°
Объяснение:
Пусть точка пересечения диагоналей О. По свойству диагоналей ромба АО=ОС и ∠ВСО=∠DСО=120°:2=60°
1)Т.к. плоскости ABD и CBD оказались перпендикулярными , то ∠АОС=90°
ΔАОС-прямоугольный , равнобедренный , АО=ОС=х ,АС=4√2 см.
По т. Пифагора х²+х²=(4√2)² , 2х²=16*2 ,х=4 , АО=ОС=4 см.
2) ΔВОС -прямоугольный (диагонали ромба взаимно-перпендикулярны). ∠ОВС=90°-60°=30°. По свойству угла в 30° , ВС=8см. Сторона ромба 8 см.
Ромб ABCD перегнули по его большей диагональю BD так, что плоскости ABD и CBD оказались перпендикулярными, а расстояние между точками A и C стала равна 4√2 см. Найдите длину сторона ромба, если тупой угол ромба равен 120°
Объяснение:
Пусть точка пересечения диагоналей О. По свойству диагоналей ромба АО=ОС и ∠ВСО=∠DСО=120°:2=60°
1)Т.к. плоскости ABD и CBD оказались перпендикулярными , то ∠АОС=90°
ΔАОС-прямоугольный , равнобедренный , АО=ОС=х ,АС=4√2 см.
По т. Пифагора х²+х²=(4√2)² , 2х²=16*2 ,х=4 , АО=ОС=4 см.
2) ΔВОС -прямоугольный (диагонали ромба взаимно-перпендикулярны). ∠ОВС=90°-60°=30°. По свойству угла в 30° , ВС=8см. Сторона ромба 8 см.
Тогда угол 3=1, углы 2+3=180 °.
Если угол 3=x, то угол 2=5x
x+5x=180°
6x=180°
x=30°
5x=5*30=150°
угол 1=30°; угол 2=150°