Дано: трапеция АВСД, где ВС – меньшее основание. АВ=ВС=СД. Из т.В опустили высоту ВЕ к стороне АД. Точка О – пересечение ВЕ и АС. ВО=10, ОЕ=8.
1) 1) Пусть ВС=х, тогда АВ=х. Из треугольника АВЕ: АЕ^2=AB^2-BE^2=x^2-(10+8)^2=x^2-324
2) 2) Треугольники АОЕ и ВОС подобны по 2-м углам (углы АОЕ и ВОС равны как вертикальные; углы ОАЕ и ОСВ равны как накрест лежащие при 2-х параллельных прямых), тогда АЕ:ВС=ОЕ:ОВ. Отсюда АЕ=ВС*ОЕ/ОВ=х*8/10. Значит АЕ^2=x^2*64/100
3) 3) Подставим уравнение из п.2 в п.1: x^2-324= x^2*64/100. Отсюда х=30
4) 4) Тогда АЕ^2=30^2-324=576. Отсюда АЕ=24
5) 5) АД=ВС+2*АЕ=30+2*24=78
6) 6) S=1/2*(ВС+АД)*ВЕ=1/2*(30+78)*18=972
В треугольнике против большей стороны лежит больший угол.
Доказательство:
Пусть в ΔАВС АВ > ВС. Докажем, что ∠С > ∠А.
Отложим на стороне АВ отрезок ВК = ВС. Так как АВ > ВС, то точка К будет лежать между точками А и В, тогда угол 1 будет частью угла С:
∠1 < ∠С.
∠2 - внешний для ΔАСК, а внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Тогда ∠2 = ∠А + ∠АСК, т.е.
∠2 > ∠А.
И еще ∠1 = ∠2 как углы при основании равнобедренного треугольника ВСК. Получаем:
∠А < ∠2 < ∠C, значит
∠А < ∠С
Обратная теорема: В треугольнике против большего угла лежит большая сторона.
Доказательство:
Пусть в треугольнике АВС ∠С > ∠A. Докажем, что АВ > ВС.
Предположим, что АВ < ВС. Тогда по доказанной теореме ∠С должен быть меньше ∠А. Это противоречит условию. Значит предположение неверно, АВ > ВС.