При двух параллельных и секущей образуются углы односторонние, которые в сумме дают 180 градусов. Но угол 1 = 0,6 угла 2. Имеем Угол 2 = х угол 1 = 0,6х х+0,6х=180 1,6х = 180 х=112,5 Второй угол равен 112,5*0,6 = 67,5
1. ΔMDN подобен ΔADB по двум пропорциональным сторонам и углу между ними (DM:MA = DN:NB = 2:1, ∠D - общий) ⇒ MN:AB = 2:3, ∠DMN = DAB. Эти углы соответственные при пересечении прямых MN и АВ секущей DA, ⇒ MN║AB.
ΔNDP подобен ΔBDC по двум пропорциональным сторонам и углу между ними (DN:NB = DP:PC = 2:1, ∠D - общий) ⇒ NP:BC = 2:3, ∠DNP = ∠DBC. Эти углы соответственные при пересечении прямых РN и СВ секущей DВ, ⇒ РN║СB.
ΔDMP подобен ΔDAC по двум пропорциональным сторонам и углу между ними (DM:MA = DP:PC = 2:1, ∠D - общий) ⇒ MP:AC = 2:3.
MN║AB и РN║СB ⇒ плоскость MNP параллельна плоскости АВС.
1. ΔMDN подобен ΔADB по двум пропорциональным сторонам и углу между ними (DM:MA = DN:NB = 2:1, ∠D - общий) ⇒ MN:AB = 2:3, ∠DMN = DAB. Эти углы соответственные при пересечении прямых MN и АВ секущей DA, ⇒ MN║AB.
ΔNDP подобен ΔBDC по двум пропорциональным сторонам и углу между ними (DN:NB = DP:PC = 2:1, ∠D - общий) ⇒ NP:BC = 2:3, ∠DNP = ∠DBC. Эти углы соответственные при пересечении прямых РN и СВ секущей DВ, ⇒ РN║СB.
ΔDMP подобен ΔDAC по двум пропорциональным сторонам и углу между ними (DM:MA = DP:PC = 2:1, ∠D - общий) ⇒ MP:AC = 2:3.
MN║AB и РN║СB ⇒ плоскость MNP параллельна плоскости АВС.
Но угол 1 = 0,6 угла 2. Имеем Угол 2 = х угол 1 = 0,6х
х+0,6х=180 1,6х = 180 х=112,5 Второй угол равен 112,5*0,6 = 67,5