Объяснение:
Найдем ∠АОD=360°-π/3-π/6-3π/4=360°-60°-30°-135°=135° .
Для удобства обозначим отрезки ОА=а, ОВ=в, ОС=у, OD=х. Воспользуемся формулой площади треугольника S=0,5*а*в*sin(a,в) для всех 4-х треугольников
1)S(АОВ)=0,5*а*в*sin(a,в) , 20= 0,5*а*в*sin60 , а*в=80/√3, в=80/(а√3) ;
2)S(ВОС)=0,5*в*у*sin(в,у) , 5= 0,5*в*у*sin30 , в*у=20 ;
3)S(СOD)=0,5*х*у*sin(a,в) , 10√3= 0,5*а*в*sin135 , х*у=40√(3/2) ;
4)S(АOD)=0,5*х*а*sin(х,а) , S(АOD)=0,5*ах*sin135 , S(АOD)= 0,5*а*х*√2/2
5) матрешки
в=80/(а√3) → в*у=20 , 80/(а√3) *у=20 , у=а√3/4 ;
у=а√3/4 → х*у=40√(3/2) , х* (а√3/4) =40√(3/2) , х=160√2/(2а) ;
х=160√2/(2а) → S(АOD)=0,5*а*х*√2/2=0,5*а*160√2/(2а) *(√2/2)=40.
ответ:36 см^2
Объяснение:Пусть сторона основания равна а.
Тогда высота основания h = a*sqrt(3)/2
S = 1/2 *a*a*sqrt(3)/2 = 9*sqrt(3) => a = 6 см
Одно из боковых рёбер пирамиды перпендикулярно снованию.
Его длина M =h*tg(30) = h/sqrt(3) = 3 см
Два других равны между собой, их длины находим из условия:
N^2 =M^2 +a^2 => N = 3*sqrt(5) см
Площадь каждой из перпендикулярных боковых граней:
S1 = 1/2 *M*a = 9 см^2
Высота третьей боковой грани P = 2*N = 6 см
Её площадь S2 = 1/2 *a*P = 18 см^2
Площадь боковой поверхности пирамиды
Sбок = 2*S1 +S2 = 36 см^2
Всё понятно?
тогда по теотеме косинусов
х²=4х²+3х²-4√3х²*cos α
cos α=6x²/4√3x²=√3/2
α=30