Рассмотрим две пересекающиеся в точке M прямые a и b. Через две пересекающиеся прямые можно провести плоскость, назовем её P.
Проведем прямую c, которая пересекает прямые a и b в точках A и B соответственно.
A принадлежит a -> A принадлежит P
B принадлежит b -> B принадлежит P
-> прямая c лежит в плоскости P
с - произвольная прямая -> все прямые, которые пересекают a и b и не проходят через M - точку пересечения прямых a и b лежат с этими прямыми в одной плоскости.
Теперь рассмотрим случай, когда прямые проходят через точку пересечения M прямых a и b.
Возьмем произвольную точку N, которая не лежит в плоскости P и проведем прямую через точки N и M.
Прямая NM не принадлежит плоскости P.
Итак, основной вывод.
Прямые, которые пересекают две пересекающиеся прямые и не проходят через их точку пересечения всегда лежат с этими прямыми в одной плоскости.
Те прямые, которые проходят через точку пересечения пересекающихся прямых не всегда лежат с ними в одной плоскости.
Lокр=8м
360/90=4
8/4=2м длина четверти окружности
Lокр=2*π*R
R=Lокр/2*π
R=2/2*π=1/π=1/3.14=0.32м
ответ: радиус новой окружности - 0,32м