1. 14см
2.21 см
3. 20 см
1. EF это средняя линия двух сторон треугольникаАВС => если ЕА=4 то ЕВ тоже = 4 , также и с ВС, FC=5 => BF =5. основание АС = 10, а т.к. EF это ср.линия то она равна половине АС то есть =5
2. здесь абсолютно тоже самое только на оборот.
MN=3 и это причём ср.линия то АС будет равен 6
MB=4, и если брать св-ва ср.линии то получается что АВ=8, также и с ВС, она будет равна 7 (3,5+3,5=7)
3. Вот тут уже действует правило: Р каждого маленького треугольника в 2 раза < Р большого треугольника. Исходя из этого правила РА¹В¹С¹= 20см.
В равнобедренном треугольнике АВС точки К и М являются серединами боковой стороны АВ и ВС соответственно. ВД – медиана треугольника. Доказать, что ∆ ВКД = ∆ ВМД
ВД по свойству медианы равнобедренного треугольника, в котором АВ=ВС, является еще биссектрисой угла В и высотой к основанию АС
∠АВД=∠СВД,
В треугольниках ВКД и ВМД углы при В равны ( ВД - биссектриса угла АВС)
Стороны КВ и МВ равны ( т.к. КМ делит равные АВ и ВС пополам).
ВД - их общая сторона
В ∆ КВД и ∆ МВД равны две стороны и угол, заключенный между ними.
По первому признаку равенства треугольников ∆ КВД = ∆ МВД, что и требовалось доказать.