Вкубе с ребром 2 через точку, лежащую на одном из ребер, и диагональ куба, не пересекающую это ребро, проведена плоскость. какую наименьшую площадь может иметь сечение куба этой плоскостью
Фигура в сечении будет ромбом (докажите :) ). Площадь ромба равна половине произведения диагоналей, одна из которых имеет фиксированную длину. То есть минимум будет, если расстояние от точки до центра куба (который очевидно и есть точка пересечения диагоналей ромба в сечении) минимально. То есть диагонали ромба в МИНИМАЛЬНОМ сечении равны 2√3 (большая диагональ куба) и 2√2 (это диагональ грани). Площадь минимального сечения 2√6;
Начерти 5 равных квадратов подряд, у тебя получится меньшая сторона= 1 часть, большая сторона равна 5 частям периметр-это сумма всех сторон складывай части сторон 1+1+5+5=12 частей периметр 3720 : 12=310 см это меньшая сторона 310 х 5 =1550 см большая сторона находи площадь 31 х 1550=480500 см кв 2) находи периметр первого 160+160+360+360=1040 м это длина первого и второго участков площадь первого будет 160 х 360=57600 м кв квадратный будет иметь сторону (160+360): 2=260 м площадь квадратного 260х260=67600 м кв удачи!
Решение: Площадь треугольника равна: S=1/2*a*h -где а -основание ; h- высота а=2√3 h-? Высоту (h) найдём по теореме Пифагора Так как треугольник равнобедренный (это известно по условию задачи, что боковые стороны равны по 3см), то высота делит основание пополам: и нам известен один катет -это половина основания: 2√3/2=√3 Гипотенуза-это боковая сторона треугольника, равная 3 Отсюда h²=3²- (√3)²=9-3=6 h=√6 Подставим известные нам данные в формулу площади треугольника: S=1/2*2√3*√6=√3*√6=√18=√(9*2)=3√2
Площадь ромба равна половине произведения диагоналей, одна из которых имеет фиксированную длину. То есть минимум будет, если расстояние от точки до центра куба (который очевидно и есть точка пересечения диагоналей ромба в сечении) минимально.
То есть диагонали ромба в МИНИМАЛЬНОМ сечении равны 2√3 (большая диагональ куба) и 2√2 (это диагональ грани).
Площадь минимального сечения 2√6;