Так как окружность касания осей координат, то для координат ее центра и радиуса окружности справделиво равенство учитывая, что окружность проходит через точку (8;-4) опускаем модуль (окружность за исключением точек касания находится в IV четверти)
уравнение окружности имеет вид (x-x_0)^2+(y-y_0)^2=R^2
;
R=20 или R=4
значит существуют две окружности проходящие через точку (8;-4) и касающееся осей координат
и
вторая задача, пряммая симетричная относительно точек А и В - середнинный перпендикуляр
Ищем координаты середины отрезка АВ,
(0;2)
ищем уравнение пряммой АВ в виде y=kx+b
3=-2k+b;
1=2k+b;
2=-4k
1=2k+b;
k=-0.5
b=2;
y=-0.5x+2
перпендикулярные пряммые связаны соотношением угловых коэффициентов
k_1k_2=-1
поєтому угловой коєффициент искомой пряммой равен k=-1/(-0.5)=2
учитывая что искомая пряммая проходит через точку С ищем ее уравнение в виде
y=kx+b (k=2)
2=2*0+b;
b=2
y=2x+2 или y-2x-2=0
в чем ошибка у вас - неведомо, ибо вы своего решения не предоставили
Отрезки AC и BD пересекаются в точке О, являющейся серединой отрезка AC, угол DAO= углу BCO. Докажите , что треугольники АОВ и СОD равны.
2
ПОСМОТРЕТЬ ОТВЕТЫ
Войди чтобы добавить комментарий
ответ
2,3/5
1
RomCaddy
хорошист
11 ответов
2.2 тыс. пользователей, получивших
Так как точка О-Середина АС, то АО=ОС,



tramwayniceix и 5 других пользователей посчитали ответ полезным!
2,3
(4 оценки)
Войди чтобы добавить комментарий
ответ
3,4/5
3

Ригби21
хорошист
9 ответов
1.7 тыс. пользователей, получивших
1 соедини все точки и получится четырехугольник
Так как АО=ОС (следовательно по признаку параллелограмма) эта фигура параллелограмм и углы дао=всо (как ВНК)тоже признак параллелограмма
2 угол ВАО=ДСО(как ВНК при АВ//ДС и сек Ас)
угол АВО=СДО (как ВНК АВ\\ДС и сек ВД)
Ва=Дс ( как противолежащие сторонв параллелограмма)
=> АОВ и СОД равны по 2 признаку равенства треугольников
ВО-высота проведенная к гипотенузе АС
ВО=АВ*ВС/АС
ВО=12*16:20
ВО=9,6