Отрезок BD - диаметр окружности с центром О. Хорда AC делит
пополам радиус OB и перпендикулярна к нему. Найдите углы
четырёхугольника ABCD и градусные меры дуг AB BC CD и AD.
Соединим центр окружности с вершиной А.
Отрезок ОА - радиус, МО равен его половине.
sin ∠ МАО равен МО: АО=1/2.
Это синус 30°∠ МАО=30°, ⇒∠ АОВ=60°.
ВО=АО=радиус окружности. ⇒ △ АОВ равнобедренный.
Сумма углов треугольника 180 градусов.
∠ ОВА=∠ОАВ=(180°-60°):2)=60° ⇒ △ АОВ- равносторонний.
Углы ВАD и ВСD опираются на диаметр ⇒ они прямые=90°.
⊿ ВСD и ⊿ВАD -прямоугольные, и
∠СDВ=∠АDВ=180°-(90°-60°)=30°
⊿ ВСD=⊿ВАD.
∠ D=2 ·∠АDВ=2·30°=60°
Сумма углов четырехугольника 360°
∠АВС=360°- 2·90°- 60°=120°
Градусная мера дуги равна центральному углу, который на нее
опирается.
На дугу АВ опирается центральный угол АОВ=60°⇒ ее градусная мера 60°
На дугу СВ опирается центральный угол СОВ=60°⇒ ее градусная мера 60°
В треугольнике САD ∠САD=∠DАС=60°
Вписанный угол равен половине градусной меры дуги, на которую
опирается.
На дугу CD опирается вписанный угол САD=60°⇒ она равна 2·60°=120°
На дугу АD опирается вписанный угол АСD=60°⇒ она равна 2·60°=120°
∠А=С=90°
∠В=120°
∠Д=60°
градусные меры дуг
AB=60°
BC=60°
CD=120°
AD=120°.
Объяснение:
1) знайдемо більшу сторону основи : 5²+12²=25+144=169 √=13 см , знайдемо площу основи , 1/2*5*12=30 см² , основ дві тому 2*30=60 см², шукаємо площі бічних сторін: 12*10+5*10+13*10=120+50+130=300 см²
тепер все разом: 300+60=360 см²
3) розрізали ціліндр по осі, в перерізі маємо квадрат, сторона якого є діаметром, площа квадрата за умовою є36 см², тому сторона квадрата(діаметр) буде 6 см. Тепер шукаємо площі основ і бокову поверхню циліндра. В основі циліндра є площа круга , S круг.=πД²/4=π6²/4=18πсм² основ двы , тому площа основ = 36π см², бокова поверхня циляндра є прямокутник , основа якого є довжина кола * на висоту . С=π*Д=6π а так як висота теж дорівнює діаметру, маємо бокову поверхню 36π Площа повної поверхні буде:36π+18π=54 π