. 1. Расстояния(длины сторон) определяются, по сути по теореме Пифагора. АВ = sqrt((-4+5)^2 + (3+4)^2) = sqrt(1+49)= sqrt(50) AC = sqrt((-1+5)^2 + (1+4)^2) = sqrt(16+25) = sqrt(41) BC = sqrt((-1+4)^2 + (1-3)^2) = sqrt(9 + 4) = sqrt(13) Все стороны РАЗЛИЧНЫ, поэтому треугольник ТОЧНО НЕ РАВНОБЕДРЕННЫЙ.(Нарисуй его и ты в этом убедишься!). 2. С(-1,1) радиус = СВ = sqrt(13), поэтому уравнение искомой окружности (х+1)^2 + (y-1)^2 = 13 3. Конечно НЕТ, даже и решать не стоит, потому что СА > больше радиуса 4. По известной формуле пишем это уравнение А(-5,-4) В(-4,3) у + 4 х +5 = 3 + 4 -4 + 5 то есть у + 4 = -7х -35 у = -7х -39, ну или 7х + у + 39 = 0 Вот и всё
Задача: Известно, что в треугольниках АВС и А1В1С1 А = А1, АВ = А1В1, АС = А1С1. На сторонах ВС и В1С1 отмечены точки К и К1, такие, что СК = С1К1. Докажите, что ∆ АВК = ∆ А1В1К1.
ответы:Δ АВС=ΔА1В1С1 по первому признаку равенства треугольников, так как ∠А=∠А1, АВ=А1В1,АС=А1С1- по условию.
В равных треугольниках соответственные стороны равны,
значит ВС=В1С1, тогда ВК=В1К1, так как КС=К1С1 - по условию.
В ΔАВК иΔА1В1К1:
АВ=А1В1, ВК=В1К1, ∠В=∠В1, значит ΔАВК =ΔА1В1К1 по первому признаку равенства треугольников, что и требовалось доказать.
Рисунок: картинка
Sбок. конус.= п*r*l =3.14 * 10 * 26 = 816.4
Sбок. цилиндр. = 2п*Rцилиндра.*h h -высота цилиндра
Sбок. цилиндра = 2п*R*h = Sбок. конуса = 816.4 отсюда опр.радиус цилиндра R = Sбок./ 2п*h = 816.4 / 2*3.14*12 = 10.83 см.