1- (Б)
2- (В)
3 - (Г)
4- (Б)
Объяснение:
1) Площа квадрата = а * а
Якщо а=6; 6*6=36 (Б)
2) Діагональ квадрата d=
* а ; 8=
* а ; а= 8 /
; тобто сторона квадрата дорівнює 8 /
; а площа звичайно сторону помножити на сторону ( 8 /
) * ( 8 /
) = 64/2 (верх множимо на верх а низ множимо на низ).
Дорівнює 32 (тобто В)
3) площа прямокутника це сторона помножена на іншу сторону
6 * 4 = 24
Відповідь - Г
4) Нам потрібно узнати невідому сторону.. по закону АРХІМЕДА ( квадрат діагоналі дорівнює сумі квадратів сторін)
=
+
;
-
=
;
=
-
; х =
; х=
; х=4
=
+ 
Тобто сторони у нас = 3, та 4. А діагональ між ними = 5
Площа дорівнює 3 * 4 = 12
Відповідь - Б
1- (Б)
2- (В)
3 - (Г)
4- (Б)
Объяснение:
1) Площа квадрата = а * а
Якщо а=6; 6*6=36 (Б)
2) Діагональ квадрата d=
* а ; 8=
* а ; а= 8 /
; тобто сторона квадрата дорівнює 8 /
; а площа звичайно сторону помножити на сторону ( 8 /
) * ( 8 /
) = 64/2 (верх множимо на верх а низ множимо на низ).
Дорівнює 32 (тобто В)
3) площа прямокутника це сторона помножена на іншу сторону
6 * 4 = 24
Відповідь - Г
4) Нам потрібно узнати невідому сторону.. по закону АРХІМЕДА ( квадрат діагоналі дорівнює сумі квадратів сторін)
=
+
;
-
=
;
=
-
; х =
; х=
; х=4
=
+ 
Тобто сторони у нас = 3, та 4. А діагональ між ними = 5
Площа дорівнює 3 * 4 = 12
Відповідь - Б
угол С=90, СВ=7 см, АС=24 см.
Треугольник имеет отношение сторон из Пифагоровых троек 7:24:25. ⇒ Гипотенуза этого треугольника равна 25 см.
(Можно проверить по т. Пифагора)
Сделаем чертеж.
Перпендикуляр СК - искомое расстояние.
СН - высота данного треугольника, НК - ее проекция на плоскость. В прямоугольном треугольнике СКН катет СК противолежит углу 30°, ⇒
он равен половине гипотенузы СН.
Высота прямоугольного треугольника - среднее пропорциональное произведений отрезков, на которые она делит гипотенузу.
НВ - проекция катета СВ на гипотенузу.
Катет прямоугольного треугольника - среднее пропорциональное произведения гипотенузы на проекцию этого катета. ⇒
СВ²=АВ*ВН
49=25 ВН
ВН=49:25=1,96 см
СН²=АН*ВН= (25-1,96)*1,96=45,1584
СН= 6,72 см
СК=6,72:2=3,36 см