Вправильной четырехугольной пирамиде мавсд высота 4 см, апофема наклонена к плоскости основания под углом 30 градусов. найдите площадь поверхности пирамиды.(решите подробно с рисунком)
Если подойти к вопросу кошерным образом, то можно сначала найти площадь треугольника CDF, и она внезапно окажется 96. (я посчитал на абаке с формулы Герона, а вообще много, выбирай любой). И тут мы заметим, что площадь S=24 ровно в 4 раза меньше, чем площадь CDF. Если S - площадь NQT (у тебя не сказано, я типа догадываюсь), то соответственно длины всех сторон будут в корень(4) = 2 раза меньше, чем у CDF, а именно: 15, 13 и 4. Выбирай 15 как наибольшую, и получаешь такой ответ.
Ну, по крайней мере я так думаю, что решил правильно.
По свойствам углов параллелограма угол ВАД= углу ВСД и равен 30. Сумма углов параллелограмма, прилежащих к одной стороне, равна 180º, значит ВСД+СДА=180, СДА=180-30=150. Теперь находим угол ВДА=150-75(угол ВДС=75, из дано), значит угол ВДА=75 И угол АВД тоже равен 75, так как 180-30-75=75. Значит треугольник АВД и треугольник ВСД равнобедренный с боковыми сторонами АВ и АД, ВСи СД. Сумма длин сторон АВ и АД равна половине периметра, а он равен 40 см., также мы уже знаем, что эти стороны равны, значит АВ=АД=40/2/2=10 см ответ: все стороны параллелограмма по 10 см, а углы 30,150,30,150