Abcd- прямоугольная трапеция (ad параллельно bc), угол abc= 90. в трапецию вписано круг. через ad проведено плоскость. на расстоянии 8 см от основы bc. уго л adc= 60. угол между стороной cd та её проекциею = 30. зайти: периметр трапеции
Посмотрите решение, по возможности перепроверьте вычисления: 1. По т. Пифагора можно найти половину стороны основания, так как боковое ребро, апофема и половина стороны основания образуют прямоугольный треугольник: √(5²-3²)=4. Тогда сторона основания равна 8 см. 2. Площадь боковой поверхности состоит из утроенной площади боковой грани (равнобедренный треугольник с основанием 8 см, высотой 3 см.), то есть Пл_боковой_поверхности=3*0,5*8*3=36 см². 3.Высота пирамиды соединяет вершину вне основания и центр описанной окружности, которая описана вокруг треугольника в основании. Зная, что сторона правильного Δ-ка равна 8 см., можно найти радиус описанной окружности: Радиус_описанной окружности=2/3 *8*sin60°=8/√3. Тогда высота пирамиды находится из прямоугольного Δ-ка, образованного высотой пирамиды, радиусом описанной окружности основания и боковым ребром (последние равны 8/√3 и 5 см.): √(25-(64/3))=√11/3 4. V=1/3 *SΔ*h; V=1/3 *1/2 *8²*sin60°*√11/3
Посмотрите решение, по возможности перепроверьте вычисления: 1. По т. Пифагора можно найти половину стороны основания, так как боковое ребро, апофема и половина стороны основания образуют прямоугольный треугольник: √(5²-3²)=4. Тогда сторона основания равна 8 см. 2. Площадь боковой поверхности состоит из утроенной площади боковой грани (равнобедренный треугольник с основанием 8 см, высотой 3 см.), то есть Пл_боковой_поверхности=3*0,5*8*3=36 см². 3.Высота пирамиды соединяет вершину вне основания и центр описанной окружности, которая описана вокруг треугольника в основании. Зная, что сторона правильного Δ-ка равна 8 см., можно найти радиус описанной окружности: Радиус_описанной окружности=2/3 *8*sin60°=8/√3. Тогда высота пирамиды находится из прямоугольного Δ-ка, образованного высотой пирамиды, радиусом описанной окружности основания и боковым ребром (последние равны 8/√3 и 5 см.): √(25-(64/3))=√11/3 4. V=1/3 *SΔ*h; V=1/3 *1/2 *8²*sin60°*√11/3
в треугольнике СДС1:
угол СДС1=30
СС1=8
значит СД=СС1/sin(СДС1) = 16
в трапеции АВСД:
СД=16
угол АДС=60
значит АВ=СД*sin(60)=8*корень(3)
в трапецию АВСД вписана окружность
значит периметр трапеции АВСД равен удвоенной сумме противоположных сторон P= (СД + АВ )*2=(16+8*корень(3))*2=32+16*корень(3)