В тр-ке АВС ∠С=90. ОК, ОМ, ОН - радиусы, проведённые к сторонам АВ, ВС и АС соответственно. АК=14.4 см, ВК=25.6 см. Тр-ки АОК и АОН равны по признакам подобия и общей стороне, значит АН=АК=14.4 см Точно так-же ВМ=ВК=25.6 см СН=СМ=R АС=АН+СН=14.4+R ВС=ВМ+СМ=25.6+R Площадь тр-ка АВС можно посчитать по двум формулам: 1) S=АК·КВ=14.4·25.6=368.64 см² - формула подходит при вписанной окружности в прямоугольный тр-ник. 2) S=АС·ВС/2 (14.4+R)(25.6+R)/2=368.64 R²+40R-368.64=0 R1≈-47.72 - отрицательное значение не подходит, R2≈7.72 см.
1) Треугольники ВОС и АОД подобны по двум углам ∠СВД=∠ВДА - внутренние накрест лежащие при палаллельных прямых ВС и АД и секущей ВД ∠ВОС=АОД - как вертикальные. Из подобия треугольников следует пропорциональность сторон ВО:ОД=ВС:АД Пусть ВО=х, тогда ВС=(х+2) х:(х+2)=6:14 14х=6х+12 8х=12 х=1,5 ВД=ВО+ОД=х+(х+2)=2х+2=2·1,5+2=3+2=5 см 2) По свойству биссектрисы: биссектриса угла треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам АВ:АС=ВК:КС=4:7 АВ=4х АС=7х АС-АВ=9 7х-4х=9 3х=9 х=3 см АВ=4х=4·3=12 см АС=7х=7·3=21 см
С1Е1:ЕС=ВС1:ВС
3/8=х/28
х=10,5
наверно так