Из точки а к плоскости проведены перпендикуляр ао и две равные наклонные ав и ас.известно,что вс=во.найдите углы треугольника вос.решение а /| \ в / | \с оав=асвс=воесли две стороны во и вс равны, значит со=вс=во(только у меня получилось, угол вос=180 град, но по факту 60 град)из этого следует, что всо - треугольник равностороннйи, а значит углы равны 60 град
1) ΔАВС равнобедренный ⇒ высота АН⊥ВС явл. медианой ⇒ ВН=СН=3 По теореме о трёх перпендикулярах ДН⊥ВС ⇒ расстояние от точки Д до ВС = ДН. ΔАВН: АН=√(25-9)=4 ΔАДН: ДН=√(АД²+АН²)=√(100+16)=√116=2√29
2) АВСД - квадрат, ВН⊥ пл. АВСД АВ=4 ⇒ АС=ВД=4√2 (по теор. Пифагора) АС⊥ВД, точка О - точка пересечения диагоналей ⇒ ВО=2√2 по теореме о трёх перпенд. НО⊥АС ⇒ искомое расстояние от т. Н до т. О (до АС)= НО. ΔНВО: НО=√(ВН²+ВО²)=√(64+8)=√72=6√2 Середина АВ - точка Е, АЕ=ВЕ=2. Расстояние от т. Н до т. Е =√(ВЕ²+ВН²)=√(4+64)=√68=2√17
2) трапеции
3) равнобокие трапеции