Диагональ осевого сечения цилиндра равна 8 корней из 2 см и образует с плоскастью основания цилиндра угол 45 градусов . найти а) площадь полной поверхности цилиндра б) площадь сесения , проведенного параллельно его оси на растоянии 1 см от нее
В любом треугольнике должно выполняться так называемое неравенство треугольника: сумма любых двух сторон больше третьей стороны. Т.е. должно быть a+b>c, b+c>a и a+c>b, где а,b,c - длины сторон треугольника. Т.к. здесь 1+2<4, а должно быть наоборот, то такого треугольника не существует. Неравенство треугольника очевидно, если взять большую сторону, и к ее концам прицепить отрезки равные оставшимся сторонам, то если их сумма будет меньше этой большей стороны, то они не соединятся в точку, их длин не хватит чтобы образовать треугольник.
h² =a₁*b₁,где a₁ и b₁ проекции катетов a и b на гипотенузе(отрезки разд. высотой) || Пусть a₁ =9 см ; b₁= (h+4) см || .
h² =9(h+4) ;
h² -9h -36 =0 ;
[h= -3 ( не решения ) ; h =12 (см) .
b₁ =h+4 = 12+4 =16 (см).
Гипотенуза c = a₁+b₁ = 9 см+ 16 см =25 см .
a =√(a₁²+ h²) = √(9²+ 12²) =15 (см) . || 3*3; 3*4 ; 3*5 ||
или из a² =c*a₁=25*9⇒ a=5*3 =15 (см) .
b = (b₁²+ h²) = √(16²+ 12²) = 20 (см) . || 4*3; 4*4 ; 4*5 ||
или из b² =c*b₁=25*16 ⇒ b=5*4 =20 (см) .
ответ: 15 см, 20 см, 25 см . || 5*3; 5*4 ; 5*5 |