Острый угол параллелограмма равен 30градусов, а меньшая сторона параллелограмма, равная 8√3, равна меньшей диогонали. тогда площадь параллелограмма равна
Вам очень повезло, вопрос взят с комментариев к профилю Zsedina Итак, дам самое краткое решение: 1) диагональ прямоугольника делит его пополам 2) из треугольника с острым углом, и равными сторонами находим: а) высоту параллелограмма противолежащий катет в прямоугольном треугольнике углу 30 градусов равен половине гипотенузы, что в нашем случае 4√3 б) угол при вершине равен 180-2*30=120 по т.косинусов основание=√(2*(8√3)²-2*(8√3)²*сos120)=8√3*√2-2*(-1/2)=8*3=24 3) площадь параллелограмма равна 4√3*24=96√3 кв ед
Если ответ 4, то необходимо искать диаметр окружности описанной около данного треугольника. Не так ли? D = 2R. где R = abc/4S Найдём площадь данного треугольника по формуле S = 1/2 a*b*sin120 = 1/2 * 2 * 2* sin60 (т.к. sin120 = sin(180-60)= sin60). получим: S= 1/2*2*2*sqrt3/2 = sqrt3(кв.см) Третью сторону треугольника найдём по теореме косинусов, пусть она будет равна Х , тогда Х^2 = 2^2+2^2 - 2*2*2*cos120 = 8+8*cos 60 = 12 (cos120 = - cos60) X = sqrt12 = 2sqrt3 Получим:D = 2R = (abc/4S)*2 = (2*2*2sqrt3 / 4sqrt3) = 4 см
1. Площадь многоугольника существует. 2. Каждому многоугольнику можно поставить в соответствие некоторое положительное число (площадь) так, что выполняются следующие условия: - Равные многоугольники имеют равные площади - Если многоугольник составлен из двух многоугольников, не имеющих общих внутренних точек, то его площадь равна сумме площадей этих многоугольников. - Площадь квадрата со стороной, равной единице длины, равна одной единице измерения площади.
Формулы площади треугольника. 1) Площадь треугольника равна половине произведения основания на высоту. 2) Площадь треугольника равна половине произведения двух его сторон на синус угла между ними. 3) Площадь треугольника равна произведению его полупериметра на радиус вписанной окружности. 4) Площадь треугольника равна произведению трех его сторон, деленному на учетверенный радиус описанной окружности. 5) Формула Герона. где р - полупериметр треугольника р=(а+b+c)/2
Формулы площади параллелограмма. 1) Площадь параллелограмма равна произведению основания на высоту. 2) Площадь параллелограмма равна произведению его соседних сторон на синус угла между ними. 3) Площадь прямоугольника равна произведению двух его соседних сторон. 4) Площадь ромба равна половине произведения его диагоналей.
Итак, дам самое краткое решение:
1) диагональ прямоугольника делит его пополам
2) из треугольника с острым углом, и равными сторонами находим:
а) высоту параллелограмма
противолежащий катет в прямоугольном треугольнике углу 30 градусов равен половине гипотенузы, что в нашем случае 4√3
б) угол при вершине равен 180-2*30=120
по т.косинусов
основание=√(2*(8√3)²-2*(8√3)²*сos120)=8√3*√2-2*(-1/2)=8*3=24
3) площадь параллелограмма равна
4√3*24=96√3 кв ед