Найдем точку пересечения второй и третьей прямой. Можно брать любую пару, но так проще всего считать.
\begin{gathered}\left \{ {{2x-y=1} \atop {3x+y=4}} \right. \\ \left \{ {{2x+3x=1+4} \atop {y=4-3x}} \right. \\ \left \{ {{x=1} \atop {y=1}} \right. \end{gathered}
{
3x+y=4
2x−y=1
{
y=4−3x
2x+3x=1+4
{
y=1
x=1
Таким образом, эти две прямые пересекаются в точке A(1; 1). Если подставить эти значения x и y в уравнение первой прямой, получится верное равенство 3=3, следовательно, первая прямая тоже проходит через эту точку. Значит, все три прямые пересекаются в A.
Угол при вершине равнобедренного треугольника равен 120 , а боковая сторона 16 см. Найдите радиус круга, описанного вокруг треугольника (в см)
Объяснение:
Дано ΔАВС , АВ=ВС=16 см, ∠АВС=120° ; окружность (O, R) описана около ΔАВС .
Найти R.
Решение.
Т.к. ΔАВС -равнобедренный , то
∠А=∠С=(180°-120°):2=30° .
2R=а/sinα или 2R=ВС/sin∠А или 2R=16/sin30° или 2R=16/(0,5) или 2R=32 или R=16 см.
длинный и нудный)
Центр описанной окружности лежит в точке пересечения серединных перпендикуляров ⇒ВН- серединный перпендикуляр , а в равнобедренном треугольнике и медиана (АН=НС) и биссектриса (∠АВН=∠НВС=60°).
ΔАВС-прямоугольный , sin 60°=АН/АВ , √3/2=АН/16 , АН=8√3 см. Тогда СА=16√3 см.
2R=а/sinα , R=АС/(2sin∠АВС) , R=16√3/(2sin120°) ,
sin 120°=cos 30°=√3/2 , R=16 см
AB=√(15² +8²) =17; ΔABH (8;15;17)
R =a*b*c/4S ;
r =S/p , где p полупериметр .
AC=AH +CH =8 +20 =28;
S =(1/2)*AC * BH =14*15 =210 (см²)
R =a*b*c/4S =25*28*17/4*210 = 85/6;
r =S/p ;
p =(17+25+28)/2 =35
r =210/35;
r =6 .
Примечание :
(15 ;20 ;25)= (5*3; 5*4 ;5*5) ; (8;15;17) Пифагорова треугольники
прямоугольные треугольники с сторонами выраж натуральными числами
2) h=32; r=12
R --?
R =a*b*c/4S =ab²/4S.
S =pr
ah/2 =r*(a +2b)/2 ;
a*32 =12(a+2b) (a - , b ).
8a =3(a+2b);
b=5a/6 ;
b² - (a/2)²=12²;
(5a/6)² -(a/2)² =12² ⇒a=18 ;
b=5a/6 =5*18/6 =15.
S=ah/2 =18*32/2 =288
R =a*b*b/4S =18*15*15/4*288 ;
R=225/64.