М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
левецинкking
левецинкking
31.08.2020 19:33 •  Геометрия

8. в прямоугольном треугольнике авс к гипотенузе ав проведена высота cd. найдите длину катета ас, если ав=9 см, bd=4 см.

👇
Ответ:
0689433382
0689433382
31.08.2020
cos B=BC/AB в треугольнике ABC cos B=BD/BC в треугольнике BCD; BC/AB=BD/BC BC^2=AB*BD BC^2=9*4=36 по теореме Пифагора AC^2=AB^2-BC^2=81-36=45 AC=\sqrt{45}

ответ: AC = √45
4,5(18 оценок)
Открыть все ответы
Ответ:
plekhanov04
plekhanov04
31.08.2020
. Так как АВ||СD, то угол ABD равен углу BDC, Треугольники ABD и BDC равнобедренные, так как их боковые стороны AB, BD и BC - радиусы окружности и равны 5. Диагональ АС может быть найдена из треугольник ABC (он тоже равнобедренный, АС - его основание), Надем АС из свойства синуса угла В при вершине данного треугольника. Угол B=β+γ, из тругольника BDC γ=180−2β. Тогда угол B=β+180−2β=180−β. Из равнобедренного треугольника ABC имеем AC=2∗AB∗sin(180−β2)=10∗sin(90−β/2)=10∗cos(β/2). cos(β/2) найдем из равнобедренного треугольника ABD: cos(β/2)=h/AB, где h - высота данного треугольника (обозначена синей линией на рисунке). h=52−32−−−−−−√=4, тогда cos(β/2)=4.5, следовательно, AC=10∗45=8. ответ 8.
4,7(40 оценок)
Ответ:
Alinazonova
Alinazonova
31.08.2020

Объяснение:

Треугольник FAC и его ортоцентр - это центр вписанной окружности треугольника ABC

Объяснение: Автор задания не совсем удачно обозначил  центры вписанной и описанной окружностей. Обычно центр вписанной окружности  - это точка I, центр описанной - точка O.

С разрешения автора буду считать, что центр вписанной окружности - это I. Кстати, картинка не совсем удачная. Дело в том, что, как известно, на одной прямой (прямой Эйлера) находятся центр O описанной окружности, центроид (то есть точка G пересечения медиан)  и ортоцентр H. Центр же вписанной окружности лежит на этой прямой только если треугольник равнобедренный. Перехожу к решению.

Каждый из углов тр-ка ABC будем обозначать одной буквой - A, B, C. Значок градуса будем опускать. Из равнобедренного тр-ка EAC имеем: угол ECA=90-(A/2); из равноб. тр-ка ACD имеем: CAD=90-(C/2). Поэтому AFC=(A+C)/2. I лежит на биссектрисе угла BAC, то есть IAC=A/2, откуда DAI=DAC-IAC=90-(A+C)/2. То есть AFC+FAI=90, откуда AI перпендикулярно FC. Аналогично CI перпендикулярно  AF. Следовательно, центр вписанной окружности треугольника ABC является по совместительству - ортоцентром треугольника FAC.

4,8(16 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ