Один из углов треугольника на 120 градусов больше другого докажите что биссектриса треугольника проведённая из вершины третьего угла вдвое длиннее чем высота проведённая из той же вершины
Пусть ABC - данный треугольник, B = Х°, A = 120° + Х°. Тогда C = 180°- Х°-(120°+Х°)=60° - 2Х°. Если CL - биссектриса данного треугольника, то CLA = LCB + LBC = (30° - Х°)+Х° = 30°. Пусть CH - высота ΔАВС, тогда в ΔCLH катет CH, лежащий против угла в 30°, в два раза меньше, чем гипотенуза CL.
Длина одного прямоугольника: х; длина другого: х+10.
Площади прямоугольников относятся, как 2:3, значит: S1/S2=2/3.
Площадь одного прямоугольника: S1=x*b; другого: S2=(x+10)*b.
Подставим в уравнение выше: (x*b)/((x+10)*b)=2/3, x/(x+10)=2/3, x=20.
Значит, длина первого прямоугольника: 20 м; второго — 20+10=30 (м).
Длина большого прямоугольника равна сумме длин тех, что внутри: 20+30=50.
Исходя из формулы площади, которую я написал вначале, вычислим ширину: b=S/a=2000/50=40 (м).
Итак, больший прямоугольник, это тот, у которого больше длина. Длина большего прямоугольника 30 м, а ширина, как и у первоначального прямоугольника, 40 м. 30/40=3/4
Длина одного прямоугольника: х; длина другого: х+10.
Площади прямоугольников относятся, как 2:3, значит: S1/S2=2/3.
Площадь одного прямоугольника: S1=x*b; другого: S2=(x+10)*b.
Подставим в уравнение выше: (x*b)/((x+10)*b)=2/3, x/(x+10)=2/3, x=20.
Значит, длина первого прямоугольника: 20 м; второго — 20+10=30 (м).
Длина большого прямоугольника равна сумме длин тех, что внутри: 20+30=50.
Исходя из формулы площади, которую я написал вначале, вычислим ширину: b=S/a=2000/50=40 (м).
Итак, больший прямоугольник, это тот, у которого больше длина. Длина большего прямоугольника 30 м, а ширина, как и у первоначального прямоугольника, 40 м. 30/40=3/4
Тогда
C = 180°- Х°-(120°+Х°)=60° - 2Х°.
Если CL - биссектриса данного треугольника, то
CLA = LCB + LBC = (30° - Х°)+Х° = 30°.
Пусть CH - высота ΔАВС, тогда в ΔCLH катет CH, лежащий против угла в 30°, в два раза меньше, чем гипотенуза CL.