Решение.
1. Найти косинус наименьшего угла треугольника. Это угол С.
Напротив наименьшей стороны лежит наименьший угол. Значит, напротив угла С лежит сторона АВ=4.
Теорема косинусов гласит: квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.
Для треугольника АВС:
АВ²= ВС²+АС²–2×ВС×АС×cos∠C;
4²= 5²+7²–2×5×7×cos∠C;
16= 25+49–70cos∠C;
70cos∠C= 25+49–16;
70cos∠C= 58;
cos∠C= 58/70, это приблизительно, если округлить до тысячных равно 0,829.
Записываем в ответ:
cos∠C= 0,829.
2. Если воспользоваться калькулятором и посчитать значение угла С, а потом округлить его до целых, то выйдет ∠С=34°.
Радиус описанной окружности равнобедренного треугольника
R=а² / √(4а²-с²)=15²/√(4*15²-18²)=225/√576=225/24=9,375
Радиус вписанной окружности равнобедренного треугольника
r=с/2 * √((2а-с)/(2а+с))=18/2 * √((2*15-18)/(2*15+18))=9√1/4=9/2=4,5