3061.
Нижний цилиндр: V = πR²H = π · 2² · 1 = 4π
Если бы верхний цилиндр был бы полным, то его объем тоже был бы 4π, но у нас половинка, поэтому ½ * 4π = 2π.
Общий объем: 4π + 2π = 6π.
V/π = 6
3062. Аналогично, нижний 9π, верхний 4.5π. Сумма = 13.5π. V/π=13.5
3063. И опять также Vнижний=16, верхний 8. Сумма = 24π. V/π=24
3064.
Новый сценарий. Весь объем V = π·5²·4= 100π
Объем вырезанной трубы V=π·2²·4=16π
Цилиндр с вырезом: 100π-16π=84π.
V/π = 84
3065.
Тот же сценарий, что и в № 3064.
Весь объем V = π·6²·5=180π
V(выреза) = π·2²·5 = 20π
V(C вырезом) = V-V(выреза) = 180π - 20π = 160π
V/π = 160
3061.
Нижний цилиндр: V = πR²H = π · 2² · 1 = 4π
Если бы верхний цилиндр был бы полным, то его объем тоже был бы 4π, но у нас половинка, поэтому ½ * 4π = 2π.
Общий объем: 4π + 2π = 6π.
V/π = 6
3062. Аналогично, нижний 9π, верхний 4.5π. Сумма = 13.5π. V/π=13.5
3063. И опять также Vнижний=16, верхний 8. Сумма = 24π. V/π=24
3064.
Новый сценарий. Весь объем V = π·5²·4= 100π
Объем вырезанной трубы V=π·2²·4=16π
Цилиндр с вырезом: 100π-16π=84π.
V/π = 84
3065.
Тот же сценарий, что и в № 3064.
Весь объем V = π·6²·5=180π
V(выреза) = π·2²·5 = 20π
V(C вырезом) = V-V(выреза) = 180π - 20π = 160π
V/π = 160
2) ΔABO=ΔBOC ( т.к. AB=BC по свойству двух касательных провед из одной точки, AO=OC=r). ==>угол(ABO)=угол(CBO)=0.5*угол(ABC)=30
OA перпендикулярно AB и OC перпендикулярно BC как радиусы проведенные к точке касания ==> ΔABO и ΔBOC- прямоугольные
Т.к. угол ABO=30, угол(BAO)=90 ==> угол(BOA)=60. Т.к. треугольники ABO и BOC равны то угол(BOA)=угол(BOC)=60 ==> угол(AOC)=120-угол между радиусами
3) ΔABC: уголB=40 ==> уголA=уголC=(180-40)/2=70
Т.к. треугольник АВС равнобедр то углы при основании равны, а значит угол(DAC)=угол(DCA)=70/2=35.5
Треугольник ADC- равнобедренный т.к. угол(DAC)=угол(DCA) ==> угол(ADC)=180-2*35.5=110