М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Roost11
Roost11
23.12.2022 23:22 •  Геометрия

Периметр треугольника равен 96 а радиус вписанной окружности равен 16. найти площадь

👇
Ответ:
alinabugajcuk38
alinabugajcuk38
23.12.2022
Есть такая формула r = \frac{2S}{P} , где S - площадь, r - радиус
Подставим: 16 = \frac{2S}{96}
2S = 96*16
2S=1536
S=768
ответ: 768
4,5(68 оценок)
Открыть все ответы
Ответ:
Azamatovna11
Azamatovna11
23.12.2022

7 см

Правильное условие:

В остроугольном треугольнике ABC серединные перпендикуляры к сторонам BC и AC пересекаются в точке M. Известно, что MC = 14 см, ∠AВМ = 30°. Найдите расстояние от точки M до стороны AB. ответ дайте в сантиметрах.

Объяснение:

Серединные перпендикуляры к сторонам треугольника  пересекаются в одной точке — центре описанной окружности.

Значит МА=МВ=МС=R = 14 см.

Тогда ΔАМВ - равнобедренный с основанием АВ  и ∠МАВ=∠МВА=30°.

Расстоянием от т.М до стороны АВ есть высота равнобедренного  ΔАМВ.

Построим высоту МК. Получили прямоугольный ΔВМК с прямым ∠МКВ и гипотенузой МВ.

Катет МК = sin∠MВK * MВ.

Т.к. ∠МВК = ∠АВМ = 30°   и МА = 14 см, то

МК = sin 30° * 14 = 7 (см)


Выберите правильный ответ. В остроугольном треугольнике ABC серединные перпендикуляры к сторонам BC
4,5(14 оценок)
Ответ:
софа336
софа336
23.12.2022

7 см

Правильное условие:

В остроугольном треугольнике ABC серединные перпендикуляры к сторонам BC и AC пересекаются в точке M. Известно, что MC = 14 см, ∠AВМ = 30°. Найдите расстояние от точки M до стороны AB. ответ дайте в сантиметрах.

Объяснение:

Серединные перпендикуляры к сторонам треугольника  пересекаются в одной точке — центре описанной окружности.

Значит МА=МВ=МС=R = 14 см.

Тогда ΔАМВ - равнобедренный с основанием АВ  и ∠МАВ=∠МВА=30°.

Расстоянием от т.М до стороны АВ есть высота равнобедренного  ΔАМВ.

Построим высоту МК. Получили прямоугольный ΔВМК с прямым ∠МКВ и гипотенузой МВ.

Катет МК = sin∠MВK * MВ.

Т.к. ∠МВК = ∠АВМ = 30°   и МА = 14 см, то

МК = sin 30° * 14 = 7 (см)


Выберите правильный ответ. В остроугольном треугольнике ABC серединные перпендикуляры к сторонам BC
4,6(44 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ