Из большого угла проводим высоту к основанию, получаем прямоугольник и прямоугольный треугольник, находим углы в треугольнике.. основания в трапеции параллельны, поэтому проведенная высота дает прямой угол и к нижнему и к верхнему основания, тогда смотрим на больший угол равный 135, вычитаем из него прямой, получаем 45град, отсюда понимаем, что полученный треугольник прямоугольный равнобедренный, у нас известна гипотенуза, а квадрат гипотенузы, равен сумме квадратов катетов - находим катеты: [latex](5sqrt{2})^{2}=25*2=50 \ 50/2 =25, \ sqrt{25}=5[/latex] (находим квадрат гипотенузы, делим его на 2, и извлекаем корень квадратный, получаем катет) Катет является и высотой, значит высота равна 5см, а длина прямоугольника равна 12-5=7см Находим площадь трапеции: -площадь прямоугольника=7*5=35 -площадь треульника=(5*5)/2=12.5 площадь трапеции=35+12.5=47,5см
Построим координатный параллелепипед точки А. Отметим на оси х — Ах(1;0;0); у — Ау(0;2;0); z — Аz (0;0;3).
Затем из точки Ах проведем две прямые, параллельную оси у и оси z, из точки Ау — прямые параллельные оси x и оси z; из Аz — параллельные оси х и оси у.
При пересечении прямых получаются точки Аху, Ауz, Ахz. Тогда
AxAxy = 2; AxAxz = 3; AyAxy = 1; AyAyz = 3; AzAxz = 1; AzAyz = 2;
Перпендикулярами на координатные оси будут отрезки ААz ААу; АAх на координатные плоскости αху, Ауz АХz. Получаем что основания перпендикуляров: Аху(1;2;0), Аyz(0;2;3), Аxz(1;0;3).ответ:
Объяснение: