Строим сечение. Соединяем точку В с точкой К (серединой SC)
Проводим КМ || AB, Соединяем точку М с точкой А
Сечение ВКМА- трапеция.
КМ- средняя линия треугольника SCD и КМ=1/2 CD=1/2
В треугольнике BSC SK- медиана, но так как треугольник равносторонний, то и высота. По теореме Пифагора BK²=BC²-KC²=1-(1/2)²=3/4.
BK=√3/2.
Находим площадь равнобедренной трапеции : МК=1/2, АВ=1, ВК=МА=√3/2 ( см рисунок 2)
Проводим высоты КН и МР. ВН=РА=1/4
По теореме Пифагора
КН²=ВК²-ВН²=(√3/2)²-(1/4)²=3/4-1/16=12/16-1/16=11/16
КН=√11/4
S(сечения)=(АВ+КМ)КН/2=1/2 ·(1+1/2)√11/4=3√11/16
Объяснение:
ВД перпендикуляр к прямой СД
СД=6см
АВ пересекает СД в точке О.
ΔАСО:
катет АС=3 см
катет СО =х см
ΔВДО:
катет ВД=5см
катет ДО=6-х см
<AOC=<BOД вертикальные
ΔАСО подобен ΔВДО
ВД:АС=ДО:СО
5:3=(6-х):х
х=2,25 см, СО=2,25 см. ДО=6,75 см
ΔАСО: по теореме Пифагора АО²=3²+2,25². АО=3,75 см
ΔВДО: по теореме Пифагора ОВ²=5²+3,75². 6,25 см
АВ=АО+ОД
АВ=10 см