Втреугольник abc, в котором la = 90°, вписана окружность с центром о. найдите отрезки, на которые точка касания этой окружности и прямой ас делит сторону ас, если ос = 5 дм и ао = = 3^2 дм.
Красным цветов выделены дополнительные построения - радиусы, проведенные в т. касания. ОМ=ОR=OK=R AMOK - квадрат, т.к. МО=ОК (признак квадрата) => MO=OK=MA=AK Из прямоуг. ΔAMO по т. Пифагора: АО²=АМ²+МО² 18=2МO² MO²=9 MO=3 ⇒ AK=3 Из прямоугольного ΔСOK по т. Пифагора: СО²=ОК²+КС² 25=9+КС² КС²=16 КС=4
И.п. пятьсот шестьдесят семь семьсот восемьдесят девять сто двадцать три р.д. пятисот шестидесяти семи семисот восьмидесяти девяти ста двадцати трёх д.п. пятистам шестидесяти семи семистам восьмидесяти девяти ста двадцати трём в.п. пятьсот шестьдесят семь семьсот восемьдесят девять сто двадцать три т.п. пятьюстами шестьюдесятью семью семьюстами восемьюдесятью девятью ста двадцатью тремя п.п. пятистах шестидесяти семи семистах восьмидесяти девяти ста двадцати трёх
Если аб основание, тогда св боковая сторона, поскольку трапеция р/б, то св = ад = 10см, Проведём высоты из вершины тупых углов к большему основанию, обазначим их, как СМ и ДН. Получили два прямоугольных треугольника, которые равны по трём углам. Поскольку в р/б трапеции углы при основании равны, значит угол БСМ = углу АДН = 30градусам. АН и БМ из равенства треугольников равны. Также они лежат напротив угла в 30 градусов, соответсвенно равны 1/2 гипотенузы Т.е СВ, значит они равны 5 см. У нас остаётся отрезок МН = СД по свойству р/б трапеции. Поскоьку АБ=16, а АН и БМ 5 см, то НМ = СД = 6 см ответ: СД = 6 см
Красным цветов выделены дополнительные построения - радиусы, проведенные в т. касания. ОМ=ОR=OK=R
AMOK - квадрат, т.к. МО=ОК (признак квадрата) => MO=OK=MA=AK
Из прямоуг. ΔAMO по т. Пифагора:
АО²=АМ²+МО²
18=2МO²
MO²=9
MO=3 ⇒ AK=3
Из прямоугольного ΔСOK по т. Пифагора:
СО²=ОК²+КС²
25=9+КС²
КС²=16
КС=4