1) если в четырехугольник можно вписать окружность, то сумма его противолежащих углов = 180 град. ∠Р и ∠Н являются противолежащими. получим, что ∠Н= 180- ∠Р= 180-120=60град.
2) проведем высоту КА. рассмотрим ΔКАН:
а) треуг прямоуг, тк ∠А= 90 град( высота)
б) по тригонометрическим формулам в прямоуг. треуг. катет= гипотенуза* cos прилежащего угла. АН= 6*cos 60= 6*1\2=3см
в) по тригонометрическим формулам КА= 6*sin противолежащего угла= 6*sin 60=6*√3\2= 3√3см
3) рассмотрим ΔМКА
а) треуг прямоуг (высота)
б) по теореме катет, лежащий против угла в 30 град, равен половине гипотенузы. получим, что МК= 3√3*2=6√3см
4) залезем в ΔМКН .мы можем сказать, что этот треуг вписан в окружность. если мы применим теорему синусов в этом треуг, по найдем радиус. итак, теорема синусов: 2R=а\sinА, где а- сторона треуг, а ∠а- противолежащий угол для этой стороны. 2R=МК\sin 60=6√3: √3\2=6√3*2\√3=12. 2R=12. тогда R= 12\2=6см
ответ:6
1. Верно (свойство радиуса, проведённого в точку касания).
2. Неверно. Вписанный угол равен половине центрального соответствующего угла.
3. Неверно. Вписанный угол, опирающийся на полуокружность, равен 90° (так как полуокружность — это дуга в 180°, а градусная мера вписанного угла измеряется половиной градусной меры соответвующией дуги. Откуда вписанный угол равен 180° : 2 = 90°).
4. Верно (теорема о пересекающихся хорд в окружности).
5. Верно. Если расстояние от центра окружности до прямой больше радиуса, то у этой прямой и окружности нет общих точек.
7,499 см (расстояние от центра окружности до прямой) > 7,49 см (радиус окружности). Поэтому, по выше сказанному, у окружности и прямой нет общих точек.
6. Неверно. Такая дуга равна 30°*2 = 60° (смотрите в пункт 3).
7. Верно (свойство отрезков касательных, проведённых из одной точки).
8. Верно (по определению радиуса окружности).
9. Неверно. Прямая называется секущей по отношению к окружности только тогда, когда она имеет с окружностью две общие точки).
10. Верно (свойство касательных).