Раз периметр основания правильного шестиугольника 12 см, одна его сторона равна
12:6=2 см.
А поскольку каждая грань призмы - квадрат, то призма прямая.
Граней у этой призмы 8 - 6 боковых и 2 грани - основания.
S боковой поверхности вычислить просто, она равна сумме площадей 6 квадратов со стороной 2 см.
S боковая= 6·2²=24 см²
К этой площади следует прибавить площадь оснований, т.е. площадь двух шестиугольников.
Чтобы вычислить площадь основания призмы, его -основание- разобьем на равные правильные треугольники, которых в нем 6. Площадь правильного шестиугольника будет равна высоте правильных треугольников, из которых он состоит, на его полупериметр.
Эту высоту находят по формуле h=(а√3):2
h=(2√3):2=√3
Периметр оснований дан в условии задачи, полупериметр =12:2=6 см
S основания=6·√3 см²
S всей поверхности призмы=2·6√3+24 см²=12( √3+2) см²
( х - а)^2 + (у - в)^2 = R^2,
где (а,в) - координаты центра окружности,
R - радиус.
Если центр окружности лежит на биссектрисе, значит координаты равны у = х. Пусть у = х = t.
Точка (1; 8) принадлежит окружности, значит:
(1-t)^2 + (8-t)^2 = 5^2;
1 - 2t + t^2 + 64 - 16t + t^2 = 25;
2t^2 - 18t + 40 = 0;
t^2 - 9t + 20 = 0;
t = 4 или t = 5,
уравнений, удовлетворяющих данному условию два:
(х - 5)^2 + (y - 5)^2 = 5^2 или (х -4)^2 + (y - 4)^2 = 5^2