1.
Сумма углов параллелограмма, прилежащих к одной стороне, составляет 180°.
Дан параллелограмм АВСД, где ∠А=х°, ∠Д=х+18°.
Тогда х+х+18=180
2х+18=180
2х=16
х=81
∠А=81°, ∠С=∠А=81°
∠В=∠Д=81+18=99°.
ответ: 81°, 99°, 81°, 99°
2.
ΔАМВ подобен ΔВМС ( по двум углам)
BC/AD=CD/MD
BC/20=8/10
10BC=160
BC=16
3. ответ: 8 см
Объяснение: ЕК, как высота, перпендикулярна DE ⇒ ∆ ЕFK прямоугольный. По т.Пифагора ЕК=√(EF²-KF²)√(36-4)=√32.
Треугольник DEK прямоугольный. DE=EK:sin45°=√32•√2/2=8 см
Или по т.Пифагора DE=√(2•DK²), т.к. второй острый угол ∆ DEK=45°, и DK=EK.
4.∠СDB=∠DBCкак накрест лежащие при параллельных прямых и секущей, но ∠АDВ = ∠ВDC(по условию) значит ΔВСD - равнобедренный, тогда ВС=СD=12, Опустим высоту СК. Тогда АК=ВС=12, КD=18-12=6. По теореме Пифагора находим СК. СК²=СD²-KD²=144-36=108, CK=√108=6√3, площадь равна (12+18)/2 ·6√3= =15·6√3=90√3
5.
Высота ВК=5, опущенная на основание, является и медианой, и биссектрисой.
Высота АМ=6, опущенная на боковую сторону ВС.
Согласно формулы площади треугольника
Sавс=ВК*АС/2=АМ*ВС/2.
ВК*АС=АМ*ВС
5АС=6ВС
ВС=5АС/6
Согласно т.Пифагора из прямоугольного ΔВКС найдем ВС:
ВС²=ВК²+КС²
(5АС/6)²=5²+(АС/2)²
25АС²/36=25+АС²/4
16АС²/36=25
АС²=56,25
АС=7,5
ВС=5*7,5/6=6,25
ответ: 6,25 см, 6,25 см, 7,5 см