Если нам известны стороны:
Проведем две медианы к боковым сторонам треугольника.
Так как он равнобедренный, медианы эти равны и отсекают от исходного треугольника два меньших, равных между собой.
Угол при основании неизвестен, поэтому обозначим его α и его косинус - cosα
Выразим медиану одного из образовавшихся треугольников по теореме косинусов.
Чтобы найти косинус угла при основании, применим теорему косинусов к данному в условии задачи треугольнику, стороны которого известны.
Подставив найденное значение cosα в уравнение медианы, найдем ее длину.
Контретное решение зависит от того, какие даны величины в условии задачи.
Высота SO опускается в центр O пересечения диагоналей квадрата основания из вершины S.
По условию АВ=ВС=СД=АД=8 м.
Угол наклона боковой грани к плоскости основания - это угол между апофемой SE и плоскостью <SEO=60°.
Рассмотрим прямоугольный ΔSЕО: ЕО=АД/2=8/2=4 м, SE=2EO=8 м (катет против угла 30° равен половине гипотенузы).
Тогда высота SO=√(SE²-EO²)=√(64-16)=√48=4√3 м
Площадь Sбок=Р*SE/2=4AB*SE/2=2*8*8=128 м²
ответ: 4√3 м и 128 м²