1. В цилиндре через середину радиуса основания перпендикулярно ему проведено сечение. В сечении получился квадрат площадью 16 см2. Найдите объем цилиндра.
2. Основанием прямой четырехугольной призмы является ромб, диагонали которого относятся как 5:2. Диагонали призмы равны 17 дм и 10 дм. Найдите объем призмы.
3. Основанием пирамиды является равнобедренный треугольник, основание которого равно 12 см, а боковая сторона – 10 см. Найдите объем пирамиды, если каждая ее боковая грань наклонена к плоскости основания под углом 45 градусов.
4. Площадь осевого сечения равностороннего конуса равна Q корень из 3. Найдите объем конуса.
5*. Найдите объем тела, которое образуется при вращении правильного шестиугольника со стороной a вокруг его малой диагонали.
1) по условию угл 4 + угл 6 = 78 градусов, а эти угля __накрест лежащие__, поэтому угл 4 __=_ угл 6 = __39__ градусов
2) угл 2 = углу 4 , угл 8 = углу 6, так как эти углы __вертикальные__, поэтому угл 2 = _39___ градусов и угл 8 = __39__ градусов.
3) угл 3 = _141__ градусов - угл 4 = _39__ градусов - угл 5 = _141__ градусов - угл 6 = _39__ градусов, так как угл 3, угл 4, угл 5, и угл 6 __смежные__.
4) угл 1 = углу 3 и угл 7 = углу 5, так как эти углы _накрестлежащие___.
ответ: угл 1= __141_ градусов, угл 2= _39__ градусов, угл 3= __141_ градусов, угл 4= _39__ градусов, угл 5= _141__ градусов, угл 6= _39__ градусов, угл 7= _141__ градусов, угл 8= __39_ градусов.
Объяснение:
Полученный четырехугольник, площадь которого нам нужно найти, обозначим ЕНОТ (это точки пересечения указанных прямых).
Рассмотрим четырехугольник МВРД: стороны МВIIРД (противоположные стороны прямоугольника равны и параллельны) и МВ=РД (по условию это половины противолежащих сторон). Следовательно ВРIIМД и ВР=МД, а четырехугольник МВРД является параллелограммом.
Аналогично четырехугольник АNCQ - параллелограмм (по условию NCIIAQ, NC=AQ, значит ANIICQ, AN=CQ)
Получается, что и четырехугольник ЕНОТ - параллелограмм.
Найдем площадь параллелограмма Sмврд :
Sмврд= Sавсд - 2Sамд=АВ*АД-2* (АМ*АД/2)=аb-(а/2*b)=ab/2 =Sавсд/2=20/2=10
Рассмотрим ΔАМД: его стороны пересекаются параллельными прямыми AN и CQ, которые отсекают на стороне АД равные отрезки AQ=QД, а значит и на стороне МД - равные отрезки ЕТ=ТД (по теореме Фалеса)
Тоже самое и в ΔВСР: BN=NC, BH=HO, а также ВН=НО=ЕТ=ТД.
Рассмотрим ΔАВН: в нем МЕ||ВН, АМ=МВ, значит МЕ- средняя линия этого треугольника МЕ=ВН/2=ЕТ/2.
Сторона МД=МЕ+ЕТ+ТД=ЕТ/2+ЕТ+ЕТ=5ЕТ/2.
ЕТ=2МД/5
Площадь ЕНОТ равна Sенот=h*ЕТ=h*2МД/5.
Высота h четырехугольника ЕНОТ равна высоте четырехугольника МВРД. Исходя из Sмврд=h*МД, h=Sмврд/МД=10/МД.
Получается, Sенот=10/МД*2МД/5=4.
ответ:4