Параллельно стороне kn треугольника kmn проведена прямая, пересекающая стороны mk и mn в точках а и в соответственно. найдите длину отрезка ав, если известно, что площадь трапеции kabn составляет 75 % площади треугольника kmn, kn = 16.
S трапеции где а и в - основания трапеции h-высота
Из вершины угла меньшего основания опустим на большее основание перпендикуляр. Получатся 2 отрезка. Меньший из них равен : (большее основание - меньшее)\2 Так мы найдем меньший отрезок
Периметр равен: большее основание+меньшее+ 2*боковые стороны (т.к.они равны) Выразим из этой полученной формулы боковую сторону :(Периметр -(сумма оснований))\2 Так мы найдем боковую сторону
У нас есть меньший отрезок и боковая сторона. По формуле Пифагора выразим высоту
Затем подставим числа в формулу площади. Все. Решено.
В треугольнике АВО все углы равны по 60 градусов,т.к треугольник равносторониий угол АОВ является центральным углом и равен 60 градусам,а угол АСВ является вписанным,он равен половине соответствующего центрального угла и равен 30 градусовТ.к. треугольник ABC равносторонний, то все углы равны 60 градусов===>угол АOВ=60Т.к. угол АОВ центральный, то величина дуги АВ тоже равна 60.Угол АСВ вписанный, и опирается на дугу АВ. Т.к. он вписанный то угол будет равен половине величины дуги, тоесть уголАОВ=60/2=30 Или если просто из правила. Величина вписанного угла равна половине центрального угла опирающего на эту дугу. уголВСА=уголВОА/
S(AMB) =(1/4)S(KMN) ⇔ S(AMB) / S(KMN) =(1/2)² .
ΔAMB подобен ΔKMN ( AB | | KN ) , следовательно :
S(AMB) / S(KMN) = (AB/KN)² ;
(1/2)² =(AB/KN)² ⇒ AB/KN =1/2 ⇒AB =KN/2 (те оказалась AB средняя линия треугольника KMN) .
AB = 16/2 =8 .
ответ : AB = 8.