а) Возьмем угол С прямой. Получим теорему Пифагора, косинус прямого угла равен нулю. а=3, в=4, с=5.
Можно взять угол С тупой, тогда срабатывает теорема косинусов, при условии выполнения неравенства треугольников такой треугольник будет существовать.
ответ Существует.
б) Отношение а к с равно отношению косинуса А к косинусу С. Возьмем, например, угол А и угол С по 45°, а угол В прямой. Тогда при выполнении неравенства треугольников такой треугольник прямоугольный равнобедренный существует.
в) Если угол В прямой, а угол А равен 30°,
сторона с =а√3, в=2а
ответ Существует
CD=√(-1+2)²+(3-0)²+(4-5)²=√(1+9+1)=√11
AB=CD
BC=√(-2-1)²+(0-1)²+(5+3)²=√(9+1+64)=√74
AD=√(-1-2)²+(3-4)²+(4+4)²=√(9+1+64)=√74
BC=AD
cos(ABΛCD)=(-1-9-1)/√11*√11=-11/11=-1⇒ABΛCD=180⇒AB||CD
cos(BCΛAD)=(9+1+64)/√74*√74=74/74=1⇒BCΛAD=0⇒BC||AD
ABCD-параллелограмм