М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
BrainNotBrain
BrainNotBrain
18.06.2021 20:29 •  Геометрия

Площадь полной поверхности конуса равно 96л, а площадь боковой поверхности 60л, найдите образующую конуса

👇
Ответ:
Ilya2569
Ilya2569
18.06.2021
Площадь полной поверхности конуса:
S = π R² + π R L, где L - образующая.
Площадь боковой поверхности конуса:
S = π R L
Найдём радиус основания конуса:
π R² + π R L  - π R L = π R²
96π - 60π = 36π
√36 = 6 - радиус основания.
Найдем образующую конуса:
π R L = 60π
R L = 60
6 · L = 60
L = 60 : 6 = 10
ответ: 10.
4,7(41 оценок)
Открыть все ответы
Ответ:
Fateev20067
Fateev20067
18.06.2021
Свойства параллельных прямых 
Теорема 

Две прямые, параллельные третьей, параллельны. 
Доказательство. 

Пусть прямые a и b параллельны прямой с. Допустим, что прямые a и b не параллельны. Тогда они пересекаются в некоторой точке С. Получается, что через точку С проходит две прямые параллельные прямой с. Но это противоречит аксиоме «Через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной» . Теорема доказана. 

Теорема 

Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны. 
Доказательство. 

Пусть есть параллельные прямые a и b, которые пересекаются секущей прямой с. Прямая с пересекает прямую а в точке A и прямую b в точке B. Проведем чрез точку A прямую a1 так, что бы прямые a1 и b с секущей с образовали равные внутренние накрест лежащие углы. По признаку параллельности прямых прямые a1 и b параллельны. А так как через точку A можно провести только одну прямую параллельную b, то a и a1 совпадают. 
Значит, внутренние накрест лежащие углы, образованные прямой a и b, равны. Теорема доказана. 

На основании теоремы доказывается: 

Если две параллельные прямые пересечены третьей прямой, то соответствующие углы равны. 

Если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180 º
4,7(47 оценок)
Ответ:
katerinamorozo2
katerinamorozo2
18.06.2021
При пересечении двух параллельных прямых третьей секущей сумма внутренних односторонних углов равна 180°
Всего мы получаем две пары внутренних односторонних углов:
<1 и <2, <3 и <4
Причем
<1 + <2 = 180°
<3 + <4 = 180°
Тогда <1 + <2 + <3 + < 4 = 180° + 180° = 360°
Нам известна сумма трех углов. Найдем четвертый угол:
360° - 235° = 125°
Допустим, это <1. Тогда <2 = 180°-125°=55°
<2 и <3 - накрест лежащие, по свойству параллельных прямых они равны
<2 = <3 = 55°
<4 и <1 - также накрест лежащие, следовательно
<4 = 125°
Сумма трех внутренних углов, образовавшихся при пересечении двух параллельных прямых третьей, равна
4,8(76 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ