Так противоположные углы параллелограмма равны (разность противоположных углов =0), то разность двух смежных углов равна 70 градусов.
Пусть дан параллелограмм ABCD и
угол A-угол В=70 градусов (1)
По свойству смежных углов параллелограмма (их сумма равна 180 градусов)
угол А+угол В=180 градусов (2)
Сложив равенства (1) и (2), получим
2*угол А=70 градусов +180 градусов
2*угол А=250 градусов
угол А=250 градусов:2;
угол А=125 градусов
угол В=угол А-70 градусов=125 градусов -70 градусов=55 градусов
ответ: 55 градусов, 125 градусов
(х – а)² + (у – b)² = R² – уравнение окружности, записанное в общем виде, где (а; b) – координаты центра окружности; R – радиус окружности. Из условия задачи известно, что уравнение окружности проходит через точку 8 на оси Ox, то есть через точку с координатами (8; 0), и через точку 4 на оси Oy, то есть через точку с координатами (0; 4). При этом центр находится на оси Oy, значит, точка (0; b) является центром окружности. Подставляя поочередно координаты этих точек в уравнение, получим систему двух уравнений с двумя неизвестными:
(8 – 0)² + (0 – b)² = R² и (0 – 0)² + (4 – b)² = R²;
(8 – 0)² + (0 – b)² = (0 – 0)² + (4 – b)²;
8² + b² = (4 – b)²;
b² – 8 ∙ b + 4² – 8² – b² = 0;
8 ∙ b = – 48;
b = – 6, тогда, R = 10, и уравнение окружности примет вид:
х² + (у + 6)² = 10².
ответ: х² + (у + 6)² = 10² – уравнение данной окружности.
а, b - основания
с, d - боковые стороны
a + b = c + d = 15+ 13 = 28
a + b = 28
a - b = 14
решив эту систему, получим а = 21, b = 7
проведем из вершин меньшего основания высоты. Получим уравнения
x = 5 --> h = 12
По формуле площади трапеции
S =