М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ппам
ппам
01.05.2022 01:31 •  Геометрия

Прямая, параллельная основаниям трапеции abcd, пересекает ее боковые стороны ab и cd в точках e и f соответственно. найдите длину отрезка ef, если ad = 42см, bc = 14см, cf: df = 4: 3.

👇
Ответ:
r0ma000
r0ma000
01.05.2022
Решение смотри во вложении
Прямая, параллельная основаниям трапеции abcd, пересекает ее боковые стороны ab и cd в точках e и f
4,4(88 оценок)
Открыть все ответы
Ответ:
Arai54
Arai54
01.05.2022
Находим координаты точки М - середины стороны ВС:
М((3+2)/2=2,5; (4+1)/2=2,50 = (2,5; 2,5).
Уравнение медианы АМ : (Х-Ха)/(Хм-Ха) = (У-Уа)/(Ум-Уа).
Подставив координаты точек, получаем каноническое уравнение::
\frac{x+2}{4,5} = \frac{y-2}{0,5}, или приведя к целым знаменателям \frac{x+2}{9} = \frac{y-2}{1} .
Приведя к общему знаменателю, получаем обще уравнение медианы АМ:
Х - 9У + 20 = 0.
Или в виде уравнения с коэффициентом:
у = (1/9)х + (20/9).

Высота АД перпендикулярна АС, поэтому составляем уравнение стороны АС:
АС: (х+2)/4 = (у-2)/-1,
АС: х+4у-6=0,
АС: у = -(1/4)х+(6/4).
Коэффициент а высоты ВД равен -1/(-(1/4)) = 4.
Подставим координаты точки В:
4= 4*3+С, отсюда С = 4-12 =-8.
Уравнение высоты ВД: у = 4х-8.

Для определения углов нужны длины сторон:
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √29 ≈ 5.385164807,
BC = √((Хc-Хв)²+(Ус-Ув)²) = √10 ≈ 3.16227766,
AC = √((Хc-Хa)²+(Ус-Уa)²) = √17 ≈ 4.123105626.

cos C= (АC²+ВС²-АВ²)/(2*АC*ВС) = -0.076696 (по теореме косинусов).
Угол С равен  1.647568 радиан или 94.39871 градусов.
4,8(99 оценок)
Ответ:
Дарька2000
Дарька2000
01.05.2022

2√153 см ≈ 24,74 см

Объяснение:

1) 24 - це довжина гіпотенузи; а тому кут, який вона утворює з прямою дорівнює 45°, то обидва катета (один з них - довжина проекції, а інший-висота, відстань від точки до прямої) рівні. Приймемо довжину катета за х.

Тоді, згідно з теоремою Піфагора:

х² + х² = 24²

2х²=576

х² = 288

х = √288 см

2) Довжину другої похилої L знаходимо також за теоремою Піфагора:

L = √(18² + (√288)²) = √(324 + 288) = √612 = 2√153 ≈ 24,74 см

Відповідь: 2√153 см ≈ 24,74 см

1) 24 - это длина гипотенузы, а т.к. угол, который она образует с прямой равен 45°, то оба катета (один из них - длина проекции, а другой - высота, расстояние от точки до прямой) равны. Примем длину катета за х.

Тогда, согласно теореме Пифагора:

х² + х² = 24²

2х²=576

х² = 288

х = √288 см

2) Длину второй наклонной L находим также по теореме Пифагора:

L = √(18² + (√288)²) = √(324 + 288) = √612 = 2√153 ≈ 24,74 см

4,6(5 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ