рішення: 1) В р / б трапеції кути при підставах рівні, значить якщо позначимо уг АДВ = уг СДВ = х градусів, тоді кут ДАВ = х * 2) АД || BC і ВД - січна, значить уг АДВ = уг ДВС = х * 3) В трапеції кути прилеглі до однієї бічній стороні в сумі 180 *, отримуємо: 2х + х + 90 = 180 3х = 90 х = 30 градусів, повертаємося до позначень, отримуємо: В трапеції АВСД уг А = уг Д = 60 *, уг В = уг С = 180-60 = 120 *. Відповідь: 60;60;120;120
CD=1/2 * √(2*(AC*AC+BC*BC)-AB*AB) Рассмотрим треугольник COF он прямоугольный, т. к. по условию медианы пересекаются под прямым углом. По свойству медиан, они пересекаясь делятся в состношении 2:1, следовательно: CO=2/3 * CDOF=1/3 * AF По теореме Пифагора CF*CF=OF*OF+CO*CO Подставив все вышеперечисленные формулы в теорему Пифагора и приведя подобные слагаемые найдем, что АС=9,2 см. Далее для нахождения площади воспользуемся формулой с полупериодом р=11,6 см
х^2+х^2=12^2
2х^2=144
х^2=144/2=72
х=корень(72)=6корень(2)
ВО=ОС=6sqrt(2) см.
Рассмотрим треугольник АОD. АО=ОD=у. <АОD=90 градусов. По т. Пифагора АО^2+DО^2=АD^2
у^2+у^2=16^2
2у^2=256
у^2=256/2=128
у=корень(128)=8корень(2)
АО=ОD=8корнеь(2) см.
АС=АО+ОС= 8корнеь2)+6корень(2)= 14корнеь(2).
S=1/2АС*ВD*sin90=1/2*392*1=192