Ромб - это параллелограмм, у которого все стороны равны.
Ромб имеет 2 диагонали. Каждая из диагоналей ромба делит его на 2 симметричных треугольника, поэтому, диагонали являются осями симметрии ромба.
На рисунке изображен ромб ABCD, с диагоналями АС и ВD.
AC и BD - оси симметрии ромба ABCD, поэтому нельзя построить фигуру, симметричную ромбу ABCD, относительно прямой BD.
Прямая BD - одна из осей симметрии, и ромб симметричен сам себе, относительно своей оси симметрии.
Наличие оси симметрии, характеризует ромб, как симметричную фигуру. то есть, фигуру, состоящую из отраженно равных частей, относительно прямой на плоскости.
в нашем случае, прямая AD, делит ромб на 2 отраженно равных треугольника (симметричных треугольника) ABD и CDB.
Рисунок во вложении
Рассмотрим прямоугольную трамецию АВСD, в прямоугольных трапециях всегда 2 угла равны 90 градусам (по свойству прямоугольной трапеции), то есть угол А и угол В равны, а они равны 90 градусам. Следовательно, если нам дано, что угол D равен 20 градусов, а все углы кроме одного нам известны, то мы можем найти угол С. Сумма углов любой трапеции равна 360 градусам (по свойству трапеции), следовательно, угол С равен 360-90-90-20=160 градусов
ответ: угол А - 90 градусов, угол В - 90 градусов, угол С - 160 градусов, угол D - 20 градусов
Из треугольника с гипотенузой 15, катетом 24/2 = ь12, получим второй катет, или высоту треугольника. а равна 9.
Синус угла А равен 9:15 = 3/5 = 0,6
Из теоремы синусов 15/0,6 = 2R
Отсюда. R = 12.5
Площадь всего треугольника равна 1/2*24*9 = 108.
Но площадь треугольника равна = pr, р - полу-периметр, r - радиус вписанной окружности
р = (15+15+24):2 = 27.
Отсюда 108 = 27r r = 4,
Произведение радиусов равно 12,5 * 4 = 50.