Дано тр. ABC
К, M - середины AB и ВС
AB=BC
BD - медиана
Док-ть:
тр. BKD = тр. BMD
Док-во:
так как K и M по условию середины сторон AB и ВС, то KM - средняя линия тр. ABC
AB=BC (по условию тр. равнобедренный), след-но BK=BM и угол BKM = углу BMK (углы при основании равнобедренного тр.)
BD - медиана (из определения - отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны), след-но KD=DM
Значит по первому признаку равенства треугольников: Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
эти треугольники равны (BK=BM, KD=DM, угол BKM = углу BMK)
1. Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
2. Если сторона и два прилежащих угла одного треугольника равны соответствующей стороне и прилегающим углам другого треугольника, то такие треугольники равны.
3. Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.
Отсюда, кстати, вытекают следствия для равенства прямоугольных треугольников.
1. Если два катета одного прямоугольного треугольника равны катетам другого треугольника то они равны.
2. Если катет и острый угол одного треугольника равны катету и острому углу другого треугольника, то они равны.
3. Если гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого треугольника то они равны.
4. Если катет и гипотенуза одного треугольника равны катету и гипотенузе другого треугольника то они равны.
5. Если гипотенуза одного равнобедренного треугольника равна гипотенузе другого равнобедренного треугольника, то они равны.
И т.д.