Дано: треугольник ABC. AB = 6, BC = 8, AC = 10; M,N, K - соответственно середины сторон AB, BC, AC. Найти: Периметр MNK (Pmnk) - ? Решение: 1) В треугольнике ABC MN проходит через середины AB и BC, а значит по свойству средней линии треугольника параллельна и равна одной второй стороны AC. Соответственно, NK и MK составляют одну вторую от сторон AB и BC. Значит, все стороны треугольника MNK в два раза меньше сторон треугольника ABC. MN = 5; NK = 3; MK = 4. P такого треугольника равен = 5+3+4 = 12. Ну и всё. )
Если аб основание, тогда св боковая сторона, поскольку трапеция р/б, то св = ад = 10см, Проведём высоты из вершины тупых углов к большему основанию, обазначим их, как СМ и ДН. Получили два прямоугольных треугольника, которые равны по трём углам. Поскольку в р/б трапеции углы при основании равны, значит угол БСМ = углу АДН = 30градусам. АН и БМ из равенства треугольников равны. Также они лежат напротив угла в 30 градусов, соответсвенно равны 1/2 гипотенузы Т.е СВ, значит они равны 5 см. У нас остаётся отрезок МН = СД по свойству р/б трапеции. Поскоьку АБ=16, а АН и БМ 5 см, то НМ = СД = 6 см ответ: СД = 6 см
Медиана треугольника это половина диагонали параллелограмма, построенного на сторонах этого треугольника, как на векторах. То есть это половина суммы векторов ab и ac. Но сумма двух векторов дает результирующий вектор, модуль которого можно найти по теореме косинусов и он равен: |{ab} + {ac|² = |{ab}|²+|{ac|² - 2|{ab}|*|{ac}|*cos({ab},{ac}), где cos({ab},{ac}) это косинус угла между векторами {ab} и {ac}, когда они соединены по правилу сложения векторов - конец первого - начало второго. В нашем случае угол между векторами будет равен 120°, модуль вектора |ab|=4, модуль вектора |ac|=6, а косинус угла между ними равен Cos120°= -0,5. Тогда модуль суммы этих векторов равен |m|= √(16+36+2*4*6*0,5) = √76=2√19. Искомая медиана am (модуль вектора am) равна половине этой суммы, то есть √19. ответ: АМ=√19.