М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
luss55
luss55
09.02.2020 04:08 •  Геометрия

Дан треугольник авс со сторонами 8 10 12 найдите периметр тругольника вершинами которого являеться середины старон даного треугольника

👇
Ответ:
ulianadmytryk1
ulianadmytryk1
09.02.2020
 Дано: треугольник ABC. AB = 6, BC = 8, AC = 10; M,N, K - соответственно середины сторон AB, BC, AC.  Найти: Периметр MNK (Pmnk) - ?    Решение: 1) В треугольнике ABC  MN проходит через середины AB и BC, а значит по свойству средней линии треугольника параллельна и равна одной второй стороны AC. Соответственно, NK и MK составляют одну вторую от сторон AB и BC. Значит, все стороны треугольника MNK в два раза меньше сторон треугольника ABC.      MN = 5; NK = 3; MK = 4. P такого треугольника равен = 5+3+4 = 12. Ну и всё. )
4,7(12 оценок)
Открыть все ответы
Ответ:
Muzahabiba
Muzahabiba
09.02.2020
Если аб основание, тогда св боковая сторона, поскольку трапеция р/б, то св = ад = 10см, Проведём высоты из вершины тупых углов к большему основанию, обазначим их, как СМ и ДН. Получили два прямоугольных треугольника, которые равны по трём углам. Поскольку в р/б трапеции углы при основании равны, значит угол БСМ = углу АДН = 30градусам. АН и БМ из равенства треугольников равны. Также они лежат напротив угла в 30 градусов, соответсвенно равны 1/2 гипотенузы Т.е СВ, значит они равны 5 см. У нас остаётся отрезок МН = СД по свойству р/б трапеции. Поскоьку АБ=16, а АН и БМ 5 см, то НМ = СД = 6 см ответ: СД = 6 см
4,5(67 оценок)
Ответ:
levkim
levkim
09.02.2020
Медиана треугольника это половина диагонали параллелограмма, построенного на сторонах этого треугольника, как на векторах. То есть это половина суммы векторов ab и ac.
Но сумма двух векторов дает результирующий вектор, модуль которого можно найти по теореме косинусов и он равен:
    |{ab} + {ac|² = |{ab}|²+|{ac|² - 2|{ab}|*|{ac}|*cos({ab},{ac}), где cos({ab},{ac}) это косинус угла между векторами {ab} и {ac}, когда они соединены по правилу сложения векторов - конец первого - начало второго.
В нашем случае угол между векторами будет равен 120°, модуль вектора |ab|=4, модуль вектора |ac|=6, а косинус угла между ними равен Cos120°= -0,5.
Тогда модуль суммы этих векторов равен |m|= √(16+36+2*4*6*0,5) = √76=2√19. Искомая медиана am (модуль вектора am) равна половине этой суммы, то есть √19.
ответ: АМ=√19.
4,5(24 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ