1. Расстояние от точки К до прямой МР будет являться перпендикуляр КО, опущенный из вершины К на сторону МР. Тогда в прямоугольном треугольнике РОК сторона КР=2КО (по условию). В прямоугольном треугольнике РОК катет КО равный половине гипотенузы КР лежит против угла КРМ равного 30 градусов.
2. Расстоянием от прямой b до стороны КР будет являться перпендикуляр МН, опущенный из вершины М к стороне КР. Тогда в прямоугольном треугольнике РМН против угла НРМ (это тот же угол КРМ) равного 30 градусов лежит катет МН равный половине гипотенузы МР. МН=16/2=8
Атмосферное давление — это сила, с которой воздух давит на все тела.
Воздух очень лёгкий. Один кубический метр его у земной поверхности весит всего 1 кг 300 г. Однако он оказывает значительное давление на земную поверхность. На каждый квадратный сантиметр земной поверхности воздух давит с силой в один килограмм. И если в среднем поверхность человеческого тела составляет около полутора квадратных метров, то оказывается, что на каждого из нас воздух давит с силой около 15 т.
Но такое давление раздавить всё живое. Почему же мы его не ощущаем? Объясняется это тем, что давление внутри нашего организма равно атмосферному. Внутреннее и внешнее давление как бы уравновешиваются.
B(xB; yB) = B(5; 4)
C(xC; yC) = C(-2; 0)
I) Найдем длины сторон:
AB = √(xB - xA)2 + (yB - yA)2 = √(5 - 1)2 + (4 - (-2))2 = √42 + 62 = √16 + 36 =√52 = 2√13 = 7.211
AC = √(xC - xA)2 + (yC - yA)2 = √(-2 - 1)2 + (0 - (-2))2 = √(-3)2 + 22 = √9 + 4= √13 = 3.606
BC = √(xC - xB)2 + (yC - yB)2 = √(-2 - 5)2 + (0 - 4)2 = √(-7)2 + (-4)2 =√49 + 16 = √65 = 8.062
II) Составим уравнения биссектрис. A3, B3, C3 — точки пересечения биссектрис, проходящих через вершины A, B, C соответственно, со сторонами BC, AC, AB соответственно.AA3:(((yB - yA)/АВ) + ((yC - yA)/АС)) x + (((xA - xB)/АВ) + ((xA - xC)/АС)) y +(((xByA - xAyB)/АВ)+ (xCyA - xAyC)/АС)) =
=(((4 - (-2)/7,211) + (0 - (-2)/3,606)) x + (((1 - 5)/7,211) + (1 - (-2))/3,606) y + (((5 ∙ (-2))- (1 ∙ 4))/7,211) + (((-2) ∙ (-2) - 1 ∙ 0))/3,606) = 0
=1387x + 277y - 832 = 0.
В приложении даётся полный расчёт треугольника по координатам вершин. Там расчёт уравнений биссектрис под номером 18 дано с приведением коэффициента при х равным 1.