Вугол величиной 70 градусов вписанна окружность, которая касается его сторон в точке а и в. на одной из дуг этой окружности выбрали точку с. найдите величину асв
Итак, все равно нужно вспомнить, что углы с вершиной на окружности, опирающиеся на одну и ту же хорду, равны и они в два раза меньше центрального угла. Это показано на рис.1 и 2 разными цветами. В задаче т. С может находиться по разные стороны хорды АВ, т.е. будет 2 ответа. смотрим рис.3 Имеем вписанную окружность, т.А и В- точки касания, АВ- хорда.. Проведем биссектрису МО. угол АМО=70/2=35 МАО- прямоугольный => угол АОМ=90-35=55 т.к. треуг. АОВ равнобедр. , то угол АОВ=2*55=110, тогда угол АСВ в два раза меньше центрального АОВ, т.е. =110/2=55
см. рис. 4 теперь рассмотрим т.С по другую сторону АОМ=55 АОВ=2*55=110 Но для этого случая центральный угол - это "большой" угол АОВ, т.е. 360-110=250 Тогда искомый будет АСВ=250/2=125 итак. два ответа - 55 и 125 градусов. мы подошли к св-ву, что углы а и в, опирающиеся на одну и ту же хорду, но вершины которых лежат по разные стороны хорды, связаны соотношением а+в=180
Интересно, где Вы учитесь, если такие задачи задают. Вот решение этой задачи без теории (вывод формул ищите в учебнике или в записях занятий) Мне не нравится обозначение радиусов, я их буду обозначать r1, r2, r3; Окружность, вписанная в исходный треугольник (её радиус я обозначу просто r), является вневписанной для каждого из трех отсеченных. Если построить вневписанные окружности к исходному треугольнику, с радиусами ρ1, ρ2, ρ3; то очевидно (в силу подобия отсеченных треугольников исходному) будут выполнены пропорции ρ1/r = r/r1; и то же самое для двух других. то есть ρ1 = r^2/r1; ρ2 = r^2/r2; ρ3 = r^2/r3; Остается подставить это в известные соотношения 1/r = 1/ρ1 + 1/ρ2 + 1/ρ3; то есть r = r1 + r2 + r3; и 4R = ρ1 + ρ2 + ρ3 - r; где R - радиус описанной окружности. то есть 4R = r^2*(1/r1 + 1/r2 + 1/r3 - 1/r); r = r1 + r2 + r3; это все. Я бы конечно мог привести вывод этих формул, но Вам бы никогда не задали эту задачу, если бы не выводили их на занятиях. К примеру, площадь S исходного треугольника равна S = (p - a)*ρ1 = (p - b)*ρ2 = (p - c)*ρ3 = p*r; откуда 1/ρ1 + 1/ρ2 + 1/ρ3 = (p - a)/S + (p - b)/S + ( p - c)/2 = (3p - a - b - c)/S = p/S = 1/r; Вывод формулы для R намного сложнее технически, но по сути - то же самое.
1) Квадратом называется прямоугольник, у которого все стороны равны. Прямоугольник является параллелограммом, поэтому квадрат является параллелограммом, у которого все стороны равны, т.е. ромбом, следовательно, квадрат обладает всеми св-вами прямоугольника и ромба. Св-ва квадрата: 1. Все углы квадрата прямые. 2. Диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам.
2) Две точки А и А1 называются симметричными относительно данной прямой, если эта прямая проходит через середину отрезка АА1 и перпендикулярна к нему.
смотрим рис.3
Имеем вписанную окружность, т.А и В- точки касания, АВ- хорда..
Проведем биссектрису МО.
угол АМО=70/2=35
МАО- прямоугольный => угол АОМ=90-35=55
т.к. треуг. АОВ равнобедр. , то угол АОВ=2*55=110, тогда угол АСВ в два раза меньше центрального АОВ, т.е. =110/2=55
см. рис. 4
теперь рассмотрим т.С по другую сторону
АОМ=55
АОВ=2*55=110
Но для этого случая центральный угол - это "большой" угол АОВ, т.е. 360-110=250
Тогда искомый будет АСВ=250/2=125
итак. два ответа - 55 и 125 градусов.
мы подошли к св-ву, что углы а и в, опирающиеся на одну и ту же хорду, но вершины которых лежат по разные стороны хорды, связаны соотношением
а+в=180
Эту задачу можно решать по-разному, это один из